scholarly journals Observations of Wave Breaking Kinematics in Fetch-Limited Seas

2010 ◽  
Vol 40 (12) ◽  
pp. 2575-2604 ◽  
Author(s):  
Jessica M. Kleiss ◽  
W. Kendall Melville

Abstract Breaking waves play an important role in air–sea interaction, enhancing momentum flux from the atmosphere to the ocean, dissipating wave energy that is then available for turbulent mixing, injecting aerosols and sea spray into the atmosphere, and affecting air–sea gas transfer due to air entrainment. In this paper observations are presented of the occurrence of breaking waves under conditions of strong winds (10–25 m s−1) and fetch-limited seas (0–500 km) in the Gulf of Tehuantepec Experiment (GOTEX) in 2004. An airborne nadir-looking video camera, along with a global positioning system (GPS) and inertial motion unit (IMU), provided digital videos of the breaking sea surface and position in an earth frame. In particular, the authors present observations of Λ(c), which is the distribution of breaking wave crest lengths per unit sea surface area, per unit increment in velocity c or scalar speed c, first introduced by O. M. Phillips. In another paper, the authors discuss the effect of processing methodology on the resulting shape of the Λ(c) distribution. In this paper, the elemental method of measuring breaking crests is used to investigate the Λ(c) distributions under a variety of wind and wave conditions. The integral and the first two moments of the Λ(c) distributions are highly correlated with the active breaking rate and the active whitecap coverage. The computation of whitecap coverage yields a larger observational dataset from which the variability of whitecap coverage with wind speed, friction velocity, wave age, and wave slope is presented and compared to previous observations. The dependence of the active breaking rate on the spectral peak steepness is in agreement with previous studies. Dimensional analysis of Λ(c) indicates that scaling with friction velocity and gravity, as in the classical fetch relations, collapses the breaking distributions more effectively than scaling with dominant wave parameters. Significant wave breaking is observed at speeds near the spectral peak in young seas only, consistent with previous studies. The fourth and fifth moments of Λ(c) are related to the flux of momentum transferred by breaking waves to the underlying water and the rate of wave energy dissipation, respectively. The maximum in the fourth moment occurs at breaking speeds of 5–5.5 m s−1, and the maximum in the fifth moment occurs at 5.8–6.8 m s−1, apparently independent of wave age. However, when nondimensionalized by the phase speed at the peak of the local wave spectrum cp, the maxima in the nondimensionalized fourth and fifth moments show a decreasing trend with wave age, obtaining the maxima at dimensionless speeds c/cp near unity at smaller wave ages and moving to lower dimensionless speeds c/cp ≪ 1 at larger wave ages. The angular dependence of Λ(c) is predominantly unimodal and better aligned with the wind direction than the dominant wave direction. However, the directional distribution of Λ(c) is broadest for small c and often exhibits a bimodal structure for slow breaking speeds under developing seas. An asymmetry in the directional distribution is also observed for moderately developed seas. Observations are compared to the Phillips model for Λ(c) in the equilibrium range of the wave spectrum. Although the ensemble of Λ(c) distributions appears consistent with a c−6 function, the distributions are not described by a constant power-law exponent. However, the Λ(c) observations are described well by the Rayleigh distribution for slow and intermediate speeds, yet fall above the Rayleigh distribution for the fastest breaking speeds. From the Rayleigh description, it is found that the dimensionless width of the Λ(c) distribution increases weakly with dimensionless fetch, s/u*e = 1.69χ0.06, where s is the Rayleigh parameter, u*e is the effective friction velocity, and the dimensionless fetch is a function of the fetch X and gravitational acceleration g. The nondimensionalized total length of breaking per unit sea surface area is found to decrease with dimensionless fetch for intermediate to fully developed seas, , where A is the total length of breaking crests per unit sea surface area.

Author(s):  
NAOYA SUZUKI ◽  
NAOTO EBUCHI ◽  
CHAO FANG ZHAO ◽  
TAKAHIRO OSAWA ◽  
TAKASHI MORIYAMA

The determination of wind friction velocity from satellite-derived wind data will take an important role of key factors for computation of C02 flux transfer. It is necessary for relation between wind speed and wind friction velocity to determine that of relation between nondimensional roughness length and wave age, included with all parameters (wind, wave). In this study, we proposed a new method to estimate u„, which is based on the new relationship between non-dimensional roughness and wave velocity, after considering fetch and wave directionality. Consequently, we obtained the new relationship between friction velocity and wind speed. Using this relationship, we estimated the wave frequency from two methods: 3 per 2 powers law (Toba, 1972) and WAM model (WAMDI, 1988). The results arc compared with the results estimated from Charnock formula (1955) and the above influence of wave effects on the wind stress is also discussed. A new relationship was established to determine CO. exchange coefficient based on whitecap model (Monahan and Spillane 1984), using U|0-u, relationship in North Pacific Ocean, satellite data of NOAA-AVHRR (SST) and DMSP-SSM-I (wind speed) in Oct., Nov., and Dec. 1991. The C02 exchange coefficient estimated by other models (Wanninkhof, 1992; Liss and Merlivat, 1986; Tans et al., 1990) are also compared with these results. The results show the importance of wave breaking effect. Key words: wind waves, friction velocity, C02 exchange coefficient, roughness length, wave age.


2010 ◽  
Vol 40 (9) ◽  
pp. 1917-1941 ◽  
Author(s):  
Fabrice Ardhuin ◽  
Erick Rogers ◽  
Alexander V. Babanin ◽  
Jean-François Filipot ◽  
Rudy Magne ◽  
...  

Abstract New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but, overall, the parameterizations probably yield the most accurate estimates of wave parameters to date. Perspectives for further improvement are also given.


2018 ◽  
Vol 850 ◽  
pp. 120-155 ◽  
Author(s):  
Zixuan Yang ◽  
Bing-Qing Deng ◽  
Lian Shen

We study wind turbulence over breaking waves based on direct numerical simulation (DNS) of two-fluid flows. In the DNS, the air and water are simulated as a coherent system, with the interface captured using the coupled level-set and volume-of-fluid method. Because the wave breaking is an unsteady process, we use ensemble averaging over 100 runs to define turbulence statistics. We focus on analysing the turbulence statistics of the airflow over breaking waves. The effects of wave age and wave steepness are investigated. It is found that before wave breaking, the turbulence statistics are largely influenced by the wave age. The vertical gradient of mean streamwise velocity is positive at small and intermediate wave ages, but it becomes negative near the wave surface at large wave age as the pressure force changes from drag to thrust. Furthermore, wave-coherent motions make increasingly important contributions to the momentum flux and kinetic energy of velocity fluctuations (KE-F) as the wave age increases. During the wave breaking process, spilling breakers do not influence the wind field significantly; in contrast, plunging breakers alter the structures of wind turbulence near the wave surface drastically. It is observed from the DNS results that during wave plunging, a high pressure region occurs ahead of the wave front, which further accelerates the wind in the downstream direction. Meanwhile, a large spanwise vortex is generated, which greatly disturbs the airflow around it, resulting in large magnitudes of Reynolds stress and turbulence kinetic energy (TKE) below the wave crest. Above the crest, the magnitude of KE-F is enhanced during wave plunging at small and large wave ages, but at intermediate wave age, the transient enhancement of KE-F is absent. The effect of wave breaking on the magnitude of KE-F is further investigated through the analysis of the KE-F production. It is discovered that at small wave age, the transient enhancement of KE-F is caused by the appearance of a local maximum in the profile of total momentum flux; but at large wave age, it results from the change in the sign of the KE-F production from negative to positive, due to the sign change in the wave-coherent momentum flux. At intermediate wave age, neither of these two processes is present, and the transient growth of KE-F does not take place.


2013 ◽  
Vol 43 (3) ◽  
pp. 563-582 ◽  
Author(s):  
Paul A. Hwang ◽  
Jakov V. Toporkov ◽  
Mark A. Sletten ◽  
Steven P. Menk

Abstract Airborne and spaceborne interferometric synthetic aperture radars (InSARs) produce surface velocity measurements at very high spatial resolutions over a large area. The data allow construction of the velocity strain field for highlighting ocean surface processes such as wave breaking and rip currents. Also, coherence between signals from two interferometric channels is a descriptor of the correlation condition of the surface roughness that scatters back the radar signals and it is an indication of the ocean surface turbulence. Wave breaking is a major turbulence source causing surface roughness decorrelation, thus the coherence parameter serves as an independent means for detecting wave breaking. The results of breaking detection using roughness decorrelation and critical local acceleration are comparable. In this paper, the breaking fraction in swell-dominant mixed seas along a cross-shore transect is compared with several steepness parameters characterizing different length scales of surface waves. The highest correlation coefficient (from 0.90 to 0.99) is between the breaking fraction and windsea mean square slope contributed primarily by short waves. This result reinforces the previous field observations showing that the length scales of breaking waves are much shorter than the energetic components near the spectral peak, although dominant waves and the associated wave group modulation are important in triggering the breaking process. The large spatial coverage of airborne or spaceborne operation further offers the opportunity to investigate evolution of the surface wave spectrum in high spatial (subkilometer) resolution. This capability is very useful for monitoring the coastal wave and current environment.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3306 ◽  
Author(s):  
Haili Wang ◽  
Yongzeng Yang ◽  
Changming Dong ◽  
Tianyun Su ◽  
Baonan Sun ◽  
...  

The whitecap coverage at the sea surface is affected by the ratio of kinetic energy to potential energy, θ, the wave spectrum width parameter, ρ, and other factors. This paper validates an improved statistical theory for surface whitecap coverage. Based on the theoretical analysis, we find that the whitecap coverage is more sensitive to ρ than to θ, and the improved statistical theory for surface whitecap coverage is suitable in regions of rough winds and waves. The satellite-derived whitecap coverage data in the westerly wind zone is used to validate the improved theory. The comparison between the results from theory and observations displays a better performance from the improved theory relative to the other methods tested.


2019 ◽  
Vol 49 (4) ◽  
pp. 983-992 ◽  
Author(s):  
Nick Pizzo ◽  
W. Kendall Melville ◽  
Luc Deike

AbstractUsing direct numerical simulations (DNS), Deike et al. found that the wave-breaking-induced mass transport, or drift, at the surface for a single breaking wave scales linearly with the slope of a focusing wave packet, and may be up to an order of magnitude larger than the prediction of the classical Stokes drift. This model for the drift due to an individual breaking wave, together with the statistics of wave breaking measured in the field, are used to compute the Lagrangian drift of breaking waves in the ocean. It is found that breaking may contribute up to an additional 30% to the predicted values of the classical Stokes drift of the wave field for the field experiments considered here, which have wind speeds ranging from 1.6 to 16 m s−1, significant wave heights in the range of 0.7–4.7 m, and wave ages (defined here as cm/u*, for the spectrally weighted phase velocity cm and the wind friction velocity u*) ranging from 16 to 150. The drift induced by wave breaking becomes increasingly more important with increasing wind friction velocity and increasing significant wave height.


Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


2020 ◽  
Vol 12 (21) ◽  
pp. 3618
Author(s):  
Stanislav Ermakov ◽  
Vladimir Dobrokhotov ◽  
Irina Sergievskaya ◽  
Ivan Kapustin

The role of wave breaking in microwave backscattering from the sea surface is a problem of great importance for the development of theories and methods on ocean remote sensing, in particular for oil spill remote sensing. Recently it has been shown that microwave radar return is determined by both Bragg and non-Bragg (non-polarized) scattering mechanisms and some evidence has been given that the latter is associated with wave breaking, in particular, with strong breaking such as spilling or plunging. However, our understanding of mechanisms of the action of strong wave breaking on small-scale wind waves (ripples) and thus on the radar return is still insufficient. In this paper an effect of suppression of radar backscattering after strong wave breaking has been revealed experimentally and has been attributed to the wind ripple suppression due to turbulence generated by strong wave breaking. The experiments were carried out in a wind wave tank where a frequency modulated wave train of intense meter-decimeter-scale surface waves was generated by a mechanical wave maker. The wave train was compressed according to the gravity wave dispersion relation (“dispersive focusing”) into a short-wave packet at a given distance from the wave maker. Strong wave breaking with wave crest overturning (spilling) occurred for one or two highest waves in the packet. Short decimeter-centimeter-scale wind waves were generated at gentle winds, simultaneously with the long breaking waves. A Ka-band scatterometer was used to study microwave backscattering from the surface waves in the tank. The scatterometer looking at the area of wave breaking was mounted over the tank at a height of about 1 m above the mean water level, the incidence angle of the microwave radiation was about 50 degrees. It has been obtained that the radar return in the presence of short wind waves is characterized by the radar Doppler spectrum with a peak roughly centered in the vicinity of Bragg wave frequencies. The radar return was strongly enhanced in a wide frequency range of the radar Doppler spectrum when a packet of long breaking waves arrived at the area irradiated by the radar. After the passage of breaking waves, the radar return strongly dropped and then slowly recovered to the initial level. Measurements of velocities in the upper water layer have confirmed that the attenuation of radar backscattering after wave breaking is due to suppression of short wind waves by turbulence generated in the breaking zone. A physical analysis of the effect has been presented.


2019 ◽  
Vol 124 (10) ◽  
pp. 7104-7134 ◽  
Author(s):  
M. Ryabkova ◽  
V. Karaev ◽  
J. Guo ◽  
Yu. Titchenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document