Effects of Baseline Conditions on the Simulated Hydrologic Response to Projected Climate Change

2011 ◽  
Vol 15 (27) ◽  
pp. 1-23 ◽  
Author(s):  
Kathryn M. Koczot ◽  
Steven L. Markstrom ◽  
Lauren E. Hay

AbstractChanges in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study.Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

2009 ◽  
Vol 22 (10) ◽  
pp. 2713-2725 ◽  
Author(s):  
Celeste M. Johanson ◽  
Qiang Fu

Abstract Observations show that the Hadley cell has widened by about 2°–5° since 1979. This widening and the concomitant poleward displacement of the subtropical dry zones may be accompanied by large-scale drying near 30°N and 30°S. Such drying poses a risk to inhabitants of these regions who are accustomed to established rainfall patterns. Simple and comprehensive general circulation models (GCMs) indicate that the Hadley cell may widen in response to global warming, warming of the west Pacific, or polar stratospheric cooling. The combination of these factors may be responsible for the recent observations. But there is no study so far that has compared the observed widening to GCM simulations of twentieth-century climate integrated with historical changes in forcings. Here the Hadley cell widening is assessed in current GCMs from historical simulations of the twentieth century as well as future climate projections and preindustrial control runs. The authors find that observed widening cannot be explained by natural variability. This observed widening is also significantly larger than in simulations of the twentieth and twenty-first centuries. These results illustrate the need for further investigation into the discrepancy between the observed and simulated widening of the Hadley cell.


2020 ◽  
Vol 51 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Saleem A. Salman ◽  
Mohamed Salem Nashwan ◽  
Tarmizi Ismail ◽  
Shamsuddin Shahid

Abstract Reduction of uncertainty in climate change projections is a major challenge in impact assessment and adaptation planning. General circulation models (GCMs) along with projection scenarios are the major sources of uncertainty in climate change projections. Therefore, the selection of appropriate GCMs for a region can significantly reduce uncertainty in climate projections. In this study, 20 GCMs were statistically evaluated in replicating the spatial pattern of monsoon propagation towards Peninsular Malaysia at annual and seasonal time frames against the 20th Century Reanalysis dataset. The performance evaluation metrics of the GCMs for different time frames were compromised using a state-of-art multi-criteria decision-making approach, compromise programming, for the selection of GCMs. Finally, the selected GCMs were interpolated to 0.25° × 0.25° spatial resolution and bias-corrected using the Asian Precipitation – Highly-Resolved Observational Integration Towards Evaluation (APHRODITE) rainfall as reference data. The results revealed the better performance of BCC-CSM1-1 and HadGEM2-ES in replicating the historical rainfall in Peninsular Malaysia. The bias-corrected projections of selected GCMs revealed a large variation of the mean, standard deviation and 95% percentile of daily rainfall in the study area for two futures, 2020–2059 and 2060–2099 compared to base climate.


2015 ◽  
Vol 28 (24) ◽  
pp. 9997-10013 ◽  
Author(s):  
Céline J. W. Bonfils ◽  
Benjamin D. Santer ◽  
Thomas J. Phillips ◽  
Kate Marvel ◽  
L. Ruby Leung ◽  
...  

Abstract El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.


2019 ◽  
Vol 11 (4) ◽  
pp. 1355-1369 ◽  
Author(s):  
Guodong Sun ◽  
Fei Peng

Abstract Runoff is an important water flux that is difficult to simulate and predict due to lacking observation. Meteorological forcing data are a key factor in causing the uncertainty of predicted runoff. In this study, climate projections from ten general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5) with high resolution under the Representative Concentration Pathway (RCP) 4.5 scenario are employed to estimate the future uncertainty range of predicted runoff in the North–South Transect of Eastern China (NSTEC) from 2011 to 2100. It is found that the range of future annual runoff is from 268.9 mm (Meteorological Research Institute coupled GCM, MRI-CGCM3) to 544.2 mm (Model for Interdisciplinary Research on Climate, MIROC5). The precipitation and the annual actual evapotranspiration are two key factors that affect the variation of runoff. The low annual runoff for the MRI-CGCM3 model may be caused by low precipitation and high annual actual evapotranspiration (466.9 mm). However, the high annual runoff for the MIROC5 may be caused by the high precipitation, although there is high annual actual evapotranspiration (544.2 mm). The above results imply that the forcing data and the model physics are important factors in the numerical simulation and prediction about runoff.


2017 ◽  
Author(s):  
Jay R. Alder ◽  
Steve W. Hostetler

Abstract. We apply the Community Ice Sheet Model (CISM2) to the Palaeoclimate Modelling Intercomparison 3 (PMIP3) Last Glacial Maximum (LGM) simulations to determine if the general circulation models (GCMs) simulated surface temperature and precipitation climatologies would support the large North American ice sheets. We force CISM2 with eight PMIP3 GCMs, and an additional model, GENMOM. The ice sheet simulations indicate seven GCMs produce LGM temperature and precipitation climatologies that support positive mass balances of the Laurentide and Cordilleran ice sheets (LIS, CIS) in areas corresponding to those prescribed in the GCMs, and two GCMs simulate July temperatures that are too warm to support the ice sheets. Four of the nine GCMs support the development of ice sheets in Beringia in the CISM2, in conflict with the driving GCM and reconstructions that indicate the area was ice-free. We test the sensitivity of our results over a range of snow and ice positive degree-day factors, and we evaluate the role of albedo, and shortwave and longwave radiation in the simulations. Areas with perineal snow in the GCM simulations are found to correspond well to the CISM2 simulation of ice presence.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


2018 ◽  
Vol 31 (14) ◽  
pp. 5437-5459 ◽  
Author(s):  
Hui Ding ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
Andrew T. Wittenberg

Seasonal forecasts made by coupled atmosphere–ocean general circulation models (CGCMs) undergo strong climate drift and initialization shock, driving the model state away from its long-term attractor. Here we explore initializing directly on a model’s own attractor, using an analog approach in which model states close to the observed initial state are drawn from a “library” obtained from prior uninitialized CGCM simulations. The subsequent evolution of those “model-analogs” yields a forecast ensemble, without additional model integration. This technique is applied to four of the eight CGCMs comprising the North American Multimodel Ensemble (NMME) by selecting from prior long control runs those model states whose monthly tropical Indo-Pacific SST and SSH anomalies best resemble the observations at initialization time. Hindcasts are then made for leads of 1–12 months during 1982–2015. Deterministic and probabilistic skill measures of these model-analog hindcast ensembles are comparable to those of the initialized NMME hindcast ensembles, for both the individual models and the multimodel ensemble. In the eastern equatorial Pacific, model-analog hindcast skill exceeds that of the NMME. Despite initializing with a relatively large ensemble spread, model-analogs also reproduce each CGCM’s perfect-model skill, consistent with a coarse-grained view of tropical Indo-Pacific predictability. This study suggests that with little additional effort, sufficiently realistic and long CGCM simulations provide the basis for skillful seasonal forecasts of tropical Indo-Pacific SST anomalies, even without sophisticated data assimilation or additional ensemble forecast integrations. The model-analog method could provide a baseline for forecast skill when developing future models and forecast systems.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1793 ◽  
Author(s):  
Najeebullah Khan ◽  
Shamsuddin Shahid ◽  
Kamal Ahmed ◽  
Tarmizi Ismail ◽  
Nadeem Nawaz ◽  
...  

The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data. The performance of GCMs is also found to vary for both temperatures and precipitation. The Commonwealth Scientific and Industrial Research Organization, Australia (CSIRO)-Mk3-6-0 and Max Planck Institute (MPI)-ESM-LR perform well for temperature while EC-Earth and MIROC5 perform well for precipitation. A trade-off is formulated to select the common GCMs for different climatic variables and gridded data sets, which identify six GCMs, namely: ACCESS1-3, CESM1-BGC, CMCC-CM, HadGEM2-CC, HadGEM2-ES and MIROC5 for the reliable projection of temperature and precipitation of Pakistan.


2000 ◽  
Vol 31 ◽  
pp. 80-84 ◽  
Author(s):  
Hanns Kerschner ◽  
Georg Kaser ◽  
Rudolf Sailer

AbstractMoraines of the Younger Dryas ˚Egesen Stadial", which are widespread features in the Alps, are a valuable terrestrial data source for quantitative palaeoclimatic studies. The depression of the early Younger Dryas (Egesen-I) equilibrium-line altitude (ELA) shows a distinct spatial pattern. It was greatest (about –450 to –500 m vs present day) m areas exposed towards the west and northwest. In the central, more sheltered valleys it was on the order of –300 m or less. Summer temperature depression, which can be derived from the Younger Dryas timberline depression, was on the order of –3.5 K. The stochastic glacier-climate model of Ohmura and others (1992), which relates summer temperature and precipitation at the ELA, is used to infer precipitation change. Results are compared with those obtained from the glacial-meteorological approach of Kuhn (1981a). The two models produce highly similar results. During the early Younger Dryas, climate in the central valleys of the Alps seems to have been considerably drier than today In areas open to the west and northwest, precipitation seems to have been the same as today or even slightly higher. These results, which are based on a rather dense network of data points, agree well with results from permafrost-climate studies and the more qualitative information from palaeobotanical research. They also support the results from atmospheric general circulation models for the Younger Dryas in Europe, which point towards a more zonal type of circulation.


Sign in / Sign up

Export Citation Format

Share Document