scholarly journals An Overview of the Performance and Operational Applications of the MRMS and FLASH Systems in Recent Significant Urban Flash Flood Events

Author(s):  
ALAN GERARD ◽  
STEVEN M. MARTINAITIS ◽  
JONATHAN J. GOURLEY ◽  
KENNETH W. HOWARD ◽  
JIAN ZHANG

AbstractThe Multi-Radar Multi-Sensor (MRMS) system is an operational, state-of-the-science hydrometeorological data analysis and nowcasting framework that combines data from multiple radar networks, satellites, surface observational systems, and numerical weather prediction models to produce a suite of real-time, decision-support products every two minutes over the contiguous United States and southern Canada. The Flooded Locations and Simulated Hydrograph (FLASH) component of the MRMS system was designed for the monitoring and prediction of flash floods across small time and spatial scales required for urban areas given their rapid hydrologic response to precipitation. Developed at the National Severe Storms Laboratory in collaboration with the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) and other research entities, the objective for MRMS and FLASH is to be the world’s most advanced system for severe weather and storm-scale hydrometeorology, leveraging the latest science and observation systems to produce the most accurate and reliable hydrometeorological and severe weather analyses. NWS forecasters, the public and the private sector utilize a variety of products from the MRMS and FLASH systems for hydrometeorological situational awareness and to provide warnings to the public and other users about potential impacts from flash flooding. This article will examine the performance of hydrometeorological products from MRMS and FLASH, and provide perspectives on how NWS forecasters use these products in the prediction of flash flood events with an emphasis on the urban environment.

2014 ◽  
Vol 15 (5) ◽  
pp. 1989-1998 ◽  
Author(s):  
Francesco Di Paola ◽  
Elisabetta Ricciardelli ◽  
Domenico Cimini ◽  
Filomena Romano ◽  
Mariassunta Viggiano ◽  
...  

Abstract In this paper, the analysis of an extreme convective event atypical for the winter season, which occurred on 21 February 2013 on the east coast of Sicily and caused a flash flood over Catania, is presented. In just 1 h, more than 50 mm of precipitation was recorded, but it was not forecast by numerical weather prediction (NWP) models and, consequently, no severe weather warnings were sent to the population. The case study proposed is first examined with respect to the synoptic situation and then analyzed by means of two algorithms based on satellite observations: the Cloud Mask Coupling of Statistical and Physical Methods (MACSP) and the Precipitation Evolving Technique (PET), developed at the National Research Council of Italy. Both of the algorithms show their ability in the near-real-time monitoring of convective cell formation and their rapid evolution. As quantitative precipitation forecasts by NWP could fail, especially for atypical convective events like in Catania, tools like MACSP and PET shall be adopted by civil protection centers to monitor the real-time evolution of deep convection events in aid to the severe weather warning service.


2013 ◽  
Vol 141 (5) ◽  
pp. 1648-1672 ◽  
Author(s):  
Kelly M. Keene ◽  
Russ S. Schumacher

Abstract The accurate prediction of warm-season convective systems and the heavy rainfall and severe weather associated with them remains a challenge for numerical weather prediction models. This study looks at a circumstance in which quasi-stationary convection forms perpendicular to, and above the cold-pool behind strong bow echoes. The authors refer to this phenomenon as a “bow and arrow” because on radar imagery the two convective lines resemble an archer’s bow and arrow. The “arrow” can produce heavy rainfall and severe weather, extending over hundreds of kilometers. These events are challenging to forecast because they require an accurate forecast of earlier convection and the effects of that convection on the environment. In this study, basic characteristics of 14 events are documented, and observations of 4 events are presented to identify common environmental conditions prior to the development of the back-building convection. Simulations of three cases using the Weather Research and Forecasting Model (WRF) are analyzed in an attempt to understand the mechanisms responsible for initiating and maintaining the convective line. In each case, strong southwesterly flow (inducing warm air advection and gradual isentropic lifting), in addition to directional and speed convergence into the convective arrow appear to contribute to initiation of convection. The linear orientation of the arrow may be associated with a combination of increased wind speeds and horizontal shear in the arrow region. When these ingredients are combined with thermodynamic instability, there appears to be a greater possibility of formation and maintenance of a convective arrow behind a bow echo.


2019 ◽  
Vol 19 (11) ◽  
pp. 2597-2617 ◽  
Author(s):  
Jorge Lorenzo-Lacruz ◽  
Arnau Amengual ◽  
Celso Garcia ◽  
Enrique Morán-Tejeda ◽  
Víctor Homar ◽  
...  

Abstract. An extraordinary convective rainfall event, unforeseen by most numerical weather prediction models, generated a devastating flash flood (305 m3 s−1) in the town of Sant Llorenç des Cardassar, Mallorca, on 9 October 2018. Four people died inside this village, while casualties were up to 13 over the entire affected area. This extreme event has been reconstructed by implementing an integrated flash flood modelling approach in the Ses Planes catchment up to Sant Llorenç (23.4 km2), based on three components: (i) generation of radar-derived precipitation estimates, (ii) modelling of accurate discharge hydrographs yielded by the catchment (using FEST and KLEM models), and (iii) hydraulic simulation of the event and mapping of affected areas (using HEC-RAS). Radar-derived rainfall estimates show very high agreement with rain gauge data (R2=0.98). Modelled flooding extent is in close agreement with the observed extension by the Copernicus Emergency Management Service, based on Sentinel-1 imagery, and both far exceed the extension for a 500-year return period flood. Hydraulic simulation revealed that water reached a depth of 3 m at some points, and modelled water depths highly correlate (R2=0.91) with in situ after-event measurements. The 9 October flash flood eroded and transported woody and abundant sediment debris, changing channel geomorphology. Water velocity greatly increased at bridge locations crossing the river channel, especially at those closer to the Sant Llorenç town centre. This study highlights how the very low predictability of this type of extreme convective rainfall events and the very short hydrological response times typical of small Mediterranean catchments continue to challenge the implementation of early warning systems, which effectively reduce people's exposure to flash flood risk in the region.


2008 ◽  
Vol 2 (No. 4) ◽  
pp. 156-168 ◽  
Author(s):  
L. Březková ◽  
M. Šálek ◽  
E. Soukalová ◽  
M. Starý

In central Europe, floods are natural disasters causing the greatest economic losses. One way to reduce partly the flood-related damage, especially the loss of lives, is a functional objective forecasting and warning system that incorporates both meteorological and hydrological models. Numerical weather prediction models operate with horizontal spatial resolution of several dozens of kilometres up to several kilometres, nevertheless, the common error in the localisation of the heavy rainfall characteristic maxima is mostly several times as large as the grid size. The distributive hydrological models for the middle sized basins (hundreds to thousands of km<sup>2</sup>) operate with the resolution of hundreds of meters. Therefore, the (in) accuracy of the meteorological forecast can heavily influence the following hydrological forecast. In general, we can say that the shorter is the duration of the given phenomenon and the smaller area it hits, the more difficult is its prediction. The time and spatial distribution of the predicted precipitation is still one of the most difficult tasks of meteorology. Hydrological forecasts are created under the conditions of great uncertainty. This paper deals with the possibilities of the current hydrology and meteorology with regard to the predictability of the flood events. The Czech Hydrometeorological Institute is responsible by law for the forecasting flood service in the Czech Republic. For the precipitation and temperature forecasts, the outputs of the numerical model of atmosphere ALADIN are used. Moreover, the meteorological community has available operational outputs of many weather prediction models, being run in several meteorological centres around the world. For the hydrological forecast, the HYDROG and AQUALOG models are utilised. The paper shows examples of the hydrological flood forecasts from the years 2002&ndash;2006 in the Dyje catchment, attention being paid to floods caused by heavy rainfalls in the summer season. The results show that it is necessary to take into account the predictability of the particular phenomenon, which can be used in the decision making process during an emergency.


2006 ◽  
Vol 7 (4) ◽  
pp. 660-677 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Dara Entekhabi ◽  
Rafael L. Bras ◽  
Valeriy Y. Ivanov ◽  
Matthew P. Van Horne ◽  
...  

Abstract The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.


2013 ◽  
Vol 6 (3) ◽  
pp. 5297-5344
Author(s):  
E. Pichelli ◽  
R. Ferretti ◽  
M. Cacciani ◽  
A. M. Siani ◽  
V. Ciardini ◽  
...  

Abstract. The urban forcing on thermo-dynamical conditions can largely influences local evolution of the atmospheric boundary layer. Urban heat storage can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generations of high-resolution numerical weather prediction models (NWP) is nowadays largely applied also to urban areas. It is therefore critical to reproduce correctly the urban forcing which turns in variations of wind, temperature and water vapor content of the planetary boundary layer (PBL). WRF-ARW, a new model generation, has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been verified by comparing model results with observations coming from many instruments (LiDAR, SODAR, sonic anemometer and surface stations). The crucial role of a correct urban representation has been demonstrated by testing the impact of different urban canopy models (UCM) on the forecast. Only one of three meteorological events studied will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate vertical transmission of horizontal momentum from upper levels to low atmosphere, that is partially corrected by local PBL scheme coupled with an advanced UCM. Depending on background meteorological scenario, WRF-ARW shows an opposite behavior in correctly representing canopy layer and upper levels when local and non local PBL are compared. Moreover a tendency of the model in largely underestimating vertical motions has been verified.


2020 ◽  
Vol 21 (1) ◽  
pp. 123-141
Author(s):  
Nusrat Yussouf ◽  
Katie A. Wilson ◽  
Steven M. Martinaitis ◽  
Humberto Vergara ◽  
Pamela L. Heinselman ◽  
...  

AbstractThe goal of the National Oceanic and Atmospheric Administration’s (NOAA) Warn-on-Forecast (WoF) program is to provide frequently updating, probabilistic model guidance that will enable National Weather Service (NWS) forecasters to produce more continuous communication of hazardous weather threats (e.g., heavy rainfall, flash floods, damaging wind, large hail, and tornadoes) between the watch and warning temporal and spatial scales. To evaluate the application of this WoF concept for probabilistic short-term flash flood prediction, the 0–3-h rainfall forecasts from NOAA National Severe Storms Laboratory’s (NSSL) experimental WoF System (WoFS) were integrated as the forcing to the NWS operational hydrologic modeling core within the Flooded Locations and Simulated Hydrographs (FLASH) system. Initial assessment of the potential impacts of probabilistic short-term flash flood forecasts from this coupled atmosphere–hydrology (WoFS-FLASH) modeling system were evaluated in the 2018 Hydrometeorology Testbed Multi-Radar Multi-Sensor Hydrology experiment held in Norman, Oklahoma. During the 3-week experiment period, a total of nine NWS forecasters analyzed three retrospective flash flood events in archive mode. This study will describe specifically what information participants extracted from the WoFS-FLASH products during these three archived events, and how this type of information is expected to impact operational decision-making processes. Overall feedback from the testbed participants’ evaluations show promise for the coupled NSSL WoFS-FLASH system probabilistic flash flood model guidance to enable earlier assessment and detection of flash flood threats and to advance the current warning lead time for these events.


2020 ◽  
Author(s):  
Linda Speight ◽  
Michael Cranston ◽  
Laura Kelly ◽  
Christopher White

&lt;p&gt;Surface water flooding is caused by intense rainfall before it enters rivers or drainage systems. As the climate changes and urban populations grow, the number of people around the world at risk of surface water flooding increases. Although it may not be possible to prevent such flooding, reliable and timely flood forecasts can help improve preparedness and recovery. Unlike river and coastal flooding where flood forecasting methods are well established, surface water forecasting techniques that address the challenges around predicting the location, timing and impact of events are still in their infancy.&lt;/p&gt;&lt;p&gt;Over the past five years there has been a rapid development of convection permitting numerical weather prediction models and probabilistic forecasting. Combined with an increase in computational ability, this has meant that it is potentially feasible to develop operational surface water forecasting systems for urban areas. The ability to make flood risk management decisions based on such forecasts depends on an interdisciplinary understanding of their strengths and limitations.&lt;/p&gt;&lt;p&gt;In 2019, the Scottish Environment Protection Agency (SEPA) commissioned a systematic review of UK and international surface water forecasting capabilities to inform the development of forecasting capabilities for Scotland (Speight et al, 2019). As part of the review process a literature review of international examples of operational surface water forecasting tools was conducted alongside discussion with a number of industry experts and leading academics to incorporate emerging capabilities.&lt;/p&gt;&lt;p&gt;This PICO will summarise the three approaches to surface water forecasting identified as part of this review; empirical based rainfall scenarios, hydrological forecasts linked to pre-simulated impact scenarios, and, real time hydrodynamic simulation. International examples of each type of approach will be presented along with discussion of their ability to meet the varying needs of decision makers. It will conclude by identifying &amp;#8216;grand interdisciplinary challenges&amp;#8217; that still need to be addressed to provide effective solutions for reliable and timely surface water forecasts. For example although the emergence of new meteorological and hydrological capabilities is promising there is a scientific limit to the predictability of convective rainfall. To overcome this challenge re-thinking of the established role of flood forecasting is needed alongside developing interdisciplinary solutions for communicating uncertainty, making the best use of all available data and increasing preparedness.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;em&gt;Speight, L., Cranston, M., Kelly, L. and White, C.J. (2019) Towards improved surface water flood forecasts for Scotland: A review of UK and international operational and emerging capabilities for the Scottish Environment Protection Agency. University of Strathclyde, Glasgow, pp 1-63, doi:10.17868/69416 Available online at https://strathprints.strath.ac.uk/69416/&lt;/em&gt;&lt;/p&gt;


2020 ◽  
Author(s):  
Arnau Amengual ◽  
Jorge Lorenzo-Lacruz ◽  
Celso Garcia ◽  
Enrique Morán Tejeda ◽  
Víctor Homar ◽  
...  

&lt;p&gt;An extraordinary convective rainfall event &amp;#8211;unforeseen by most numerical weather prediction models&amp;#8211; led to a devastating flash flood in the town of Sant Lloren&amp;#231; des Cardassar, eastern Mallorca, on 9th October 2018. Four people died inside the village, while the total death toll was of 13 and economic damages amounted to 91 M&amp;#8364;. The observed flooded extension inside the town by the Copernicus Emergency Management Service &amp;#8211;based on Sentinel-1 imagery&amp;#8211; far exceeded the extension for a 500-year return period flood. This extreme event has been reconstructed by implementing an integrated flood modelling approach over the semi-arid and small-sized Ses Planes basin up to Sant Lloren&amp;#231; (23.4 km&amp;#178;). This procedure is based on three components: (i) generation of high spatial and temporal resolution radar-derived precipitation estimates; (ii) modelling of the hydrologic response based on post-flood peak discharge estimates; and (iii) hydraulic simulation and mapping of the affected areas based on high water marks. Radar-derived rainfall estimates and the simulated flooding extent and water depths highly correlate with observations. The hydraulic simulation has revealed that water reached a depth of 3 m at some points inside Sant Lloren&amp;#231; and that water velocity greatly increased at bridges&amp;#8217; locations close to the town centre. Even if the catastrophic flash flood was not a debris flow, the flood bore eroded enough material to change channel geomorphology. This study also highlights how the concurrence of the very low predictability of this type of extreme convective rainfall events and the very short hydrological response times typical of small Mediterranean catchments still challenges the implementation of early warning systems, which effectively reduce people&amp;#8217;s exposure to flash flood risk in the region.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document