scholarly journals Estimating Snow Cover Duration from Ground Temperature

2015 ◽  
Vol 54 (5) ◽  
pp. 959-965 ◽  
Author(s):  
Irene E. Teubner ◽  
Leopold Haimberger ◽  
Michael Hantel

AbstractSnow cover duration is commonly derived from snow depth, snow water equivalent, or satellite data. Snow cover duration has more recently also been inferred from ground temperature data. In this study, a probabilistic snow cover duration (SCD) model is introduced that estimates the conditional probability for snow cover given the daily mean and the diurnal range of ground temperature. For the application of the SCD model, 87 Austrian sites in the Alpine region are investigated in the period of 2000 to 2011. The daily range of ground temperature is identified to represent the primary variable in determining the snow cover duration. In the case of a large dataset, however, the inclusion of the daily mean ground temperature as the second given parameter improves results. Rank correlation coefficients of predicted versus observed snow cover duration are typically between 0.8 and 0.9.

2009 ◽  
Vol 10 (6) ◽  
pp. 1447-1463 ◽  
Author(s):  
A. Langlois ◽  
J. Kohn ◽  
A. Royer ◽  
P. Cliche ◽  
L. Brucker ◽  
...  

Abstract Snow cover plays a key role in the climate system by influencing the transfer of energy and mass between the soil and the atmosphere. In particular, snow water equivalent (SWE) is of primary importance for climatological and hydrological processes and is a good indicator of climate variability and change. Efforts to quantify SWE over land from spaceborne passive microwave measurements have been conducted since the 1980s, but a more suitable method has yet to be developed for hemispheric-scale studies. Tools such as snow thermodynamic models allow for a better understanding of the snow cover and can potentially significantly improve existing snow products at the regional scale. In this study, the use of three snow models [SNOWPACK, CROCUS, and Snow Thermal Model (SNTHERM)] driven by local and reanalysis meteorological data for the simulation of SWE is investigated temporally through three winter seasons and spatially over intensively sampled sites across northern Québec. Results show that the SWE simulations are in agreement with ground measurements through three complete winter seasons (2004/05, 2005/06, and 2007/08) in southern Québec, with higher error for 2007/08. The correlation coefficients between measured and predicted SWE values ranged between 0.72 and 0.99 for the three models and three seasons evaluated in southern Québec. In subarctic regions, predicted SWE driven with the North American Regional Reanalysis (NARR) data fall within the range of measured regional variability. NARR data allow snow models to be used regionally, and this paper represents a first step for the regionalization of thermodynamic multilayered snow models driven by reanalysis data for improved global SWE evolution retrievals.


2020 ◽  
Author(s):  
Katharina Bülow ◽  
Sven Kotlarski ◽  
Christian Steger ◽  
Claas Teichmann

<p>Snow cover is a crucial part of the climate system due to its distinctive alteration of surface reflectance (snow-albedo-feedback) and its influence on further physical surface properties (e.g. heat conduction and water storage). These effects are particularly relevant in alpine areas and high latitude regions, where snow coverage prevails for a significant part of the season. In addition, various human activities rely on snow cover duration and/or snow amounts, such as winter tourism, agriculture and hydropower production.</p><p>The EURO-CORDEX project provides an RCM ensemble with a horizontal resolution of ~50 and ~12 km for both present-day and future climates assuming different emission scenarios. These simulations present a potentially valuable information source for the future snow cover evolution. Prerequisite, however, is the ability of RCMs to reproduce historical snow cover conditions. These issues are addressed in the present work on a European scale. A horizontal resolution of ~12 km allows for an improved representation of topography and is thus particularly interesting for snow cover studies, as snow in alpine regions strongly correlates with elevation. We therefore only consider the high-resolution EURO-CORDEX RCMs and, for the climate projection part, simulations for RCP2.6, RCP4.5 and RCP8.5.</p><p>To assess the RCMs’ ability of reproducing current snow cover conditions in Europe, we evaluate simulated snow water equivalent and snow cover duration/extent by comparison against different reanalysis data (e.g. ERA5, UERRA MESCAN-SURFEX) and snow products derived from remote sensing. Regarding the spatial domain, we consider entire Europe with a focus on four mountainous regions (Alps, Norway, Pyrenees and Carpathians). The evaluation reveals that, on an European scale, mean yearly snow cover duration is well captured by the ensemble mean of the models. However, the majority of the RCMs underestimates snow cover extent throughout the season. This bias is more pronounced in the reanalysis (ERA-Interim) driven set of simulations than in the GCM-driven runs. In regions with complex topography, winter snow water equivalent is distinctively overestimated in some simulations - whereas certain grid cells reveal glaciation (i.e. year-round snow coverage). A comparison with E-OBS data indicates that biases in snow cover duration and amount are, besides arising from inaccurate snow schemes, linked to mismatches in simulated air temperature and precipitation patterns. Scenarios for the 21st century show a distinctive reduction in snow cover duration for low-elevation regions, whereas the magnitude of this decrease depends, amongst other factors, on the climate scenario. Projected decreases in the snow cover are less pronounced for medium to high-elevation regions.</p>


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 404
Author(s):  
Tong Heng ◽  
Xinlin He ◽  
Lili Yang ◽  
Jiawen Yu ◽  
Yulin Yang ◽  
...  

To reveal the spatiotemporal patterns of the asymmetry in the Tianshan mountains’ climatic warming, in this study, we analyzed climate and MODIS snow cover data (2001–2019). The change trends of asymmetrical warming, snow depth (SD), snow coverage percentage (SCP), snow cover days (SCD) and snow water equivalent (SWE) in the Tianshan mountains were quantitatively determined, and the influence of asymmetrical warming on the snow cover activity of the Tianshan mountains were discussed. The results showed that the nighttime warming rate (0.10 °C per decade) was greater than the daytime, and that the asymmetrical warming trend may accelerate in the future. The SCP of Tianshan mountain has reduced by 0.9%. This means that for each 0.1 °C increase in temperature, the area of snow cover will reduce by 5.9 km2. About 60% of the region’s daytime warming was positively related to SD and SWE, and about 48% of the region’s nighttime warming was negatively related to SD and SWE. Temperature increases were concentrated mainly in the Pamir Plateau southwest of Tianshan at high altitudes and in the Turpan and Hami basins in the east. In the future, the western and eastern mountainous areas of the Tianshan will continue to show a warming trend, while the central mountainous areas of the Tianshan mountains will mainly show a cooling trend.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2014 ◽  
Vol 11 (11) ◽  
pp. 12531-12571 ◽  
Author(s):  
S. Gascoin ◽  
O. Hagolle ◽  
M. Huc ◽  
L. Jarlan ◽  
J.-F. Dejoux ◽  
...  

Abstract. The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011–2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.


2021 ◽  
pp. 117-127
Author(s):  
M. V. GEORGIEVSKY ◽  
◽  
N. I. GOROSHKOVA ◽  
V. A. KHOMYAKOVA ◽  
A. V. STRIZHENOK

The article presents an analysis of the impact of climate change on the main characteristics of ice phenomena, snow cover and the water regime in the Small Northern Dvina River basin occurring in recent decades. Recently, a significant climate warming has been observed in the basin. As a result, winters are getting warmer and shorter. There is also an increase in winter precipitation and the number of thaws. Climate warming directly affects the duration of snow cover, which decreases both due to the later formation and to the earlier destruction of snow. There is also a slight downward trend in the annual values of the maximum snow water equivalent, which may be the result of an increase in the number of thaws in winter, when a part of the snow cover melts contributing to the winter river runoff. The analysis of the main characteristics of the ice cover on the rivers of the studied basin shows that their changes are similarly to changes in the snow cover: there is a reduction in the freeze-up period due to its later formation and earlier complete destruction. The maximum ice thickness on the rivers of the basin also tends to decrease. There is an increase in winter and a decrease in spring runoff. Predictive estimates of changes in the observed trends in the future are presented in the fi nal part of the article based on the CMIP5 project data.


2009 ◽  
Vol 13 (3) ◽  
pp. 319-326 ◽  
Author(s):  
J. Tong ◽  
S. J. Déry ◽  
P. L. Jackson

Abstract. A spatial filter (SF) is used to reduce cloud coverage in Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) from 2000–2007, which are obtained from MODIS daily snow cover extent products (MOD10A1), to assess the topographic control on snow cover fraction (SCF) and snow cover duration (SCD) in the Quesnel River Basin (QRB) of British Columbia, Canada. Results show that the SF reduces cloud coverage and improves by 2% the accuracy of snow mapping in the QRB. The new product developed using the SF method shows larger SCF and longer SCD than MOD10A2, with higher altitudes experiencing longer snow cover and perennial snow above 2500 m. The gradient of SCF with elevation (d(SCF)/dz) during the snowmelt season is 8% (100 m)−1. The average ablation rates of SCF are similar for different 100 m elevation bands at about 5.5% (8 days)−1 for altitudes <1500 m with decreasing values with elevation to near 0% (8 days)−1 for altitudes >2500 m. Different combinations of slopes and aspects also affect the SCF with a maximum difference of 20.9% at a given time. Correlation coefficients between SCD and elevation attain 0.96 (p<0.001). Mean gradients of SCD with elevation are 3.8, 4.3, and 11.6 days (100 m)−1 for the snow onset season, snowmelt season, and entire year, respectively. The SF decreases the standard deviations of SCDs compared to MOD10A2 with a maximum difference near 0.6 day, 0.9 day, and 1.0 day for the snow onset season, snowmelt season, and entire year, respectively.


Sign in / Sign up

Export Citation Format

Share Document