scholarly journals The Characteristics of Spatial and Temporal Variations in the PBL during the Landfall of Tropical Cyclones across East China

2019 ◽  
Vol 58 (7) ◽  
pp. 1557-1572 ◽  
Author(s):  
Yong Han ◽  
Yiwen Zhou ◽  
Jianping Guo ◽  
Yonghua Wu ◽  
Tijian Wang ◽  
...  

AbstractThe planetary boundary layer (PBL) controls the exchange of momentum and energy between the ground surface and the free troposphere, but few studies have been involved in the connection of the PBL with the development and extinction of tropical cyclones (TCs). Studies on the PBL usually need high-resolution soundings in the lowest troposphere that are otherwise quite rare with traditional technology. Here, 1-s resolution L-band radiosonde data are acquired to study the variations in PBL characteristics associated with the development of TCs in eastern China. The strong variations in the vertical profiles of temperature, relative humidity, and wind speed in the PBL during the landfall of a TC are revealed. In addition, four typical methods, including the virtual potential temperature method, Holzworth method, bulk Richardson number method, and potential temperature gradient method, are applied to estimate the PBL height (PBLH). The results indicate that the PBLHs derived by these methods vary by several hundred meters, which may be related to their different definitions of kinetic or thermodynamic theories. Furthermore, the PBLH was found to display a slight upward tendency during the landfall of TC.

2022 ◽  
Author(s):  
Gina Jozef ◽  
John Cassano ◽  
Sandro Dahlke ◽  
Gijs de Boer

Abstract. During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 (DH2) fixed wing uncrewed aircraft system (UAS). Of particular interest is the atmospheric boundary layer (ABL) height, as ABL structure can be closely coupled to cloud properties, surface fluxes, and the atmospheric radiation budget. The high temporal resolution of the UAS observations allows us to subjectively identify ABL height for 65 out of the total 89 flights conducted over the central Arctic Ocean between 23 March and 26 July 2020 by visually analyzing profiles of virtual potential temperature, humidity, and bulk Richardson number. Comparing this subjective ABL height with the ABL heights identified by various previously published objective methods allows us to determine which objective methods are most successful at accurately identifying ABL height in the central Arctic environment. The objective methods we use are the Liu-Liang, Heffter, virtual potential temperature gradient maximum, and bulk Richardson number methods. In the process of testing these objective methods on the DH2 data, numerical thresholds were adapted to work best for the UAS-based sampling. To determine if conclusions are robust across different measurement platforms, the subjective and objective ABL height determination processes were repeated using the radiosonde profile closest in time to each DH2 flight. For both the DH2 and radiosonde data, it is determined that the bulk Richardson number method is the most successful at identifying ABL height, while the Liu-Liang method is least successful.


2014 ◽  
Vol 7 (6) ◽  
pp. 1701-1709 ◽  
Author(s):  
X. Y. Wang ◽  
K. C. Wang

Abstract. Mixing layer height (h) is an important parameter for understanding the transport process in the troposphere, air pollution, weather and climate change. Many methods have been proposed to determine h by identifying the turning point of the radiosonde profile. However, substantial differences have been observed in the existing methods (e.g. the potential temperature (θ), relative humidity (RH), specific humidity (q) and atmospheric refractivity (N) methods). These differences are associated with the inconsistency of the temperature and humidity profiles in a boundary layer that is not well mixed, the changing measurability of the specific humidity and refractivity with height, the measurement error of humidity instruments within clouds, and the general existence of clouds. This study proposes a method to integrate the information of temperature, humidity and cloud to generate a consistent estimate of h. We apply this method to high vertical resolution (~ 30 m) radiosonde data that were collected at 79 stations over North America during the period from 1998 to 2008. The data are obtained from the Stratospheric Processes and their Role in Climate Data Center (SPARC). The results show good agreement with those from N method as the information of temperature and humidity contained in N; however, cloud effects that are included in our method increased the reliability of our estimated h. From 1988 to 2008, the climatological h over North America was 1675 ± 303 m with a strong east–west gradient: higher values (generally greater than 1800 m) occurred over the Midwest US, and lower values (usually less than 1400 m) occurred over Alaska and the US West Coast.


2016 ◽  
Author(s):  
João A. Hackerott ◽  
Mostafa Bakhday Paskyabi ◽  
Stephan T. Kral ◽  
Joachim Reuder ◽  
Amauri P. de Oliveira ◽  
...  

Abstract. The budget equation components for turbulent kinetic energy (TKE) and the variances of virtual potential temperature, specific humidity, and specific CO2 content have been estimated using the Inertial Dissipation and Eddy Covariance methods. A discussion with four examples is provided about the normalization used for comparing different tracer spectra, divided by the respective characteristic scale squared. A total of 124 high frequency sample segments of a 30-min period from 20 days of the Boundary Layer Afternoon and Sunset Turbulence field campaign were used in order to provide parameterizations for the dimensionless dissipation and residual (i.e. total transport) components as a function of the Atmospheric Surface Layer (ASL) stability parameter, ζ. The results show a similar linear relation for all tracers variance dissipation components, ΦDχ ≅ 0.4 + 0.2 ζ, during the convective ASL, i.e. −1 < ζ < −0.1. Although parameterizations were also proposed for the dimensionless dissipation rate of TKE and tracer variances during stable ASL, we conclude that in this regime, other mechanisms in addition to ζ may be significantly important. In the stable and near-neutral ASL stability regimes, the transport component for different tracers may not be considered the same. In these conditions, the dissipation component of TKE and tracer variances can have the same magnitude as the other terms in their respective budget equation.


2019 ◽  
Author(s):  
Maurício I. Oliveira ◽  
Otávio C. Acevedo ◽  
Matthias Sörgel ◽  
Ernani L. Nascimento ◽  
Antonio O. Manzi ◽  
...  

Abstract. In this study, high-frequency, multi-level measurements performed from late October to mid-November of 2015 at a 80-m tall tower of the Amazon Tall Tower Observatory (ATTO) project in central Amazonas State, Brazil, were used to diagnose the evolution of thermodynamic and kinematic variables as well as scalar fluxes during the passage of outflows generated by deep moist convection (DMC). Outflow associated with DMC activity over or near the tall tower was identified through the analysis of storm echoes in base reflectivity data from S-band weather radar at Manaus, combined with the detection of gust fronts and cold pools utilizing tower data. Four outflow events were selected, three of which took place during the early evening transition or nighttime hours and one during the early afternoon. Results show that the magnitude of the drop in virtual potential temperature and changes in wind velocity during outflow passages vary according to the type, organization, and life cycle of the convective storm. Overall, the nocturnal events highlighted the passage of well-defined gust fronts with moderate decrease in virtual potential temperature and increase in wind speed. The early afternoon event lacked a sharp gust front and only a gradual drop in virtual potential temperature was observed, probably because of weak or undeveloped outflow. Sensible heat flux (H) experienced an increase at the time of gust front arrival, which was possibly due to sinking of colder air. This was followed by a prolonged period of negative H, associated with enhanced nocturnal negative H in the storms' wake. In turn, increased latent heat flux (LE) was observed following the gust front, owing to drier air coming from the outflow; however, malfunctioning of the moisture sensors during rain precluded a better assessment of this variable. Substantial enhancements of Turbulent Kinetic Energy (TKE) were observed during and after gust front passage, with values comparable to those measured in grass fire experiments, evidencing the highly turbulent character of convective outflows. The early afternoon event displayed slight decreases in the aforementioned quantities in the passage of the outflow. Finally, a conceptual model of the time evolution of H in nocturnal convective outflows observed at the tower site is presented.


1993 ◽  
Vol 18 ◽  
pp. 142-148 ◽  
Author(s):  
Masayuki Maki ◽  
Sento Nakai ◽  
Tsuruhei Yagi ◽  
Hideomi Nakamura

The mechanisms of strong winds associated with snow clouds, and the relationship between strong winds and blowing/drifting snow, were investigated. A snowstorm occurred with a typical L-mode snow band which was generated and organized longitudinally during a continental cold-air outbreak over the Sea of Japan. Doppler radar observations revealed that the snow band consisted of small echo cells arranged along the direction of the snow band. When one of the echo cells passed, blowing/drifting snow was generated and intensified by a snow cloud-induced gust, and the horizontal visibility near the ground surface was significantly decreased. Doppler radar and radiosonde data showed that the gust was due to the cold air outflow (CAO) from the snow clouds. The leading edge of the CAO was about 9 km ahead of the center of the snow cloud and the depth of the CAO was about 600 m near the forward flank of the snow cloud. The CAO was caused by a downdraft at the center of the snow cloud, which was initiated at a height of about 1.3 km and with a velocity in excess of 1 ms−1. The observed CAO speed was explained by the theory of the gravity current.


2014 ◽  
Vol 7 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
D. Li ◽  
Y. Li ◽  
N. Zhang ◽  
...  

Abstract. Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.


2017 ◽  
Vol 145 (6) ◽  
pp. 2343-2361 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu ◽  
Chenghai Wang

Abstract After a hurricane makes landfall, its evolution is strongly influenced by its interaction with the planetary boundary layer (PBL) over land. In this study, a series of numerical experiments are performed to examine the effects of boundary layer vertical mixing on hurricane simulations over land using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) Model with three landfalling hurricane cases. It is found that vertical mixing in the PBL has a strong influence on the simulated hurricane evolution. Specifically, strong vertical mixing has a positive impact on numerical simulations of hurricanes over land, with better track, intensity, synoptic flow, and precipitation simulations. In contrast, weak vertical mixing leads to the strong hurricanes over land. Diagnoses of the thermodynamic and dynamic structures of hurricane vortices further suggest that the strong vertical mixing in the PBL could cause a decrease in the vertical wind shear and an increase in the vertical gradient of virtual potential temperature. As a consequence, these changes destroy the turbulence kinetic energy in the hurricane boundary layer and thus stabilize the hurricane boundary layer and limit its maintenance over land.


2018 ◽  
Vol 18 (4) ◽  
pp. 2973-2983 ◽  
Author(s):  
Christian Rolf ◽  
Bärbel Vogel ◽  
Peter Hoor ◽  
Armin Afchine ◽  
Gebhard Günther ◽  
...  

Abstract. The impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5 ppmv (11 %) and methane (CH4) of up to 20 ppbv (1.2 %) in the extratropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10 % in August to about 20 % in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.


2014 ◽  
Vol 14 (17) ◽  
pp. 9077-9085 ◽  
Author(s):  
E. Blay-Carreras ◽  
E. R. Pardyjak ◽  
D. Pino ◽  
D. C. Alexander ◽  
F. Lohou ◽  
...  

Abstract. Gradient-based turbulence models generally assume that the buoyancy flux ceases to introduce heat into the surface layer of the atmospheric boundary layer in temporal consonance with the gradient of the local virtual potential temperature. Here, we hypothesize that during the evening transition a delay exists between the instant when the buoyancy flux goes to zero and the time when the local gradient of the virtual potential temperature indicates a sign change. This phenomenon is studied using a range of data collected over several intensive observational periods (IOPs) during the Boundary Layer Late Afternoon and Sunset Turbulence field campaign conducted in Lannemezan, France. The focus is mainly on the lower part of the surface layer using a tower instrumented with high-speed temperature and velocity sensors. The results from this work confirm and quantify a flux-gradient delay. Specifically, the observed values of the delay are ~ 30–80 min. The existence of the delay and its duration can be explained by considering the convective timescale and the competition of forces associated with the classical Rayleigh–Bénard problem. This combined theory predicts that the last eddy formed while the sensible heat flux changes sign during the evening transition should produce a delay. It appears that this last eddy is decelerated through the action of turbulent momentum and thermal diffusivities, and that the delay is related to the convective turnover timescale. Observations indicate that as horizontal shear becomes more important, the delay time apparently increases to values greater than the convective turnover timescale.


Sign in / Sign up

Export Citation Format

Share Document