scholarly journals Role of Interactions between Aerosol Radiative Effect, Dynamics, and Cloud Microphysics on Transitions of Monsoon Intraseasonal Oscillations

2013 ◽  
Vol 70 (7) ◽  
pp. 2073-2087 ◽  
Author(s):  
Anupam Hazra ◽  
B. N. Goswami ◽  
Jen-Ping Chen

Abstract Extended-range prediction of monsoon intraseasonal oscillations (MISOs), crucial for agriculture and water management, is limited by their event-to-event variability. Here, the authors propose a hypothesis supported by a number of model simulations involving detailed cloud microphysical processes indicating that aerosols contribute significantly to the transitions from “break” to “active” phases of MISO. The role of aerosol indirect effect in the process of invigoration of precipitation is demonstrated with a high-resolution regional model for Indian summer monsoon breaks that are followed by an active condition (BFA) and contrasted with breaks that are not followed by an active condition (BNFA). The BFA are characterized by higher concentrations of absorbing aerosols that lead to a stronger north–south low-level temperature gradient and strong moisture convergence. Forced uplift beyond the freezing level initiates the cold-rain process involving mixed-phase microphysics and latent heat release at higher levels, thereby invigorating convection, enhancing precipitation, and resulting in an active condition. While more aerosols tend to reduce the cloud drop size and delay the warm rain, it is overcome by the higher moisture convergence during BFA and invigoration by cold-rain processes. The net production of rainfall is sensitive to cloud structure as it depends on the relative strength of the warm- and cold-rain initiation processes. The results indicate the importance of aerosols on transitions of MISO and a pathway by which they influence the transitions involving complex interactions between direct radiative forcing, large-scale dynamics, and cloud microphysics. Broader implications of these results in event-to-event variability of MISO and its predictability are also highlighted.

2018 ◽  
Vol 31 (10) ◽  
pp. 3831-3848 ◽  
Author(s):  
Lakshmi Krishnamurthy ◽  
Gabriel A. Vecchi ◽  
Xiaosong Yang ◽  
Karin van der Wiel ◽  
V. Balaji ◽  
...  

Abstract Unprecedented high-intensity flooding induced by extreme precipitation was reported over Chennai in India during November–December of 2015, which led to extensive damage to human life and property. It is of utmost importance to determine the odds of occurrence of such extreme floods in the future, and the related climate phenomena, for planning and mitigation purposes. Here, a suite of simulations from GFDL high-resolution coupled climate models are used to investigate the odds of occurrence of extreme floods induced by extreme precipitation over Chennai and the role of radiative forcing and/or large-scale SST forcing in enhancing the probability of such events in the future. The climate of twentieth-century experiments with large ensembles suggest that the radiative forcing may not enhance the probability of extreme floods over Chennai. Doubling of CO2 experiments also fails to show evidence for an increase of such events in a global warming scenario. Further, this study explores the role of SST forcing from the Indian and Pacific Oceans on the odds of occurrence of Chennai-like floods. Neither El Niño nor La Niña enhances the probability of extreme floods over Chennai. However, a warm Bay of Bengal tends to increase the odds of occurrence of extreme Chennai-like floods. In order to trigger a Chennai like-flood, a conducive weather event, such as a tropical depression over the Bay of Bengal with strong transport of moisture from a moist atmosphere over the warm Bay, is necessary for the intense precipitation.


2016 ◽  
Vol 48 (3-4) ◽  
pp. 999-1015 ◽  
Author(s):  
Siddharth Kumar ◽  
Anika Arora ◽  
R. Chattopadhyay ◽  
Anupam Hazra ◽  
Suryachandra A. Rao ◽  
...  

2016 ◽  
Vol 73 (11) ◽  
pp. 4221-4252 ◽  
Author(s):  
Jiwen Fan ◽  
Yuan Wang ◽  
Daniel Rosenfeld ◽  
Xiaohong Liu

Abstract Over the past decade, the number of studies that investigate aerosol–cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol–cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, 2) the feedbacks between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and 3) the significance of cloud–aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol–cloud interactions and discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems. The authors summarize the main obstacles preventing the science from making a leap—for example, the lack of concurrent profile measurements of cloud dynamics, microphysics, and aerosols over a wide region on the observation side and the large variability of cloud microphysics parameterizations resulting in a large spread of modeling results on the modeling side. Therefore, large efforts are needed to escalate understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties and cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed.


2021 ◽  
Author(s):  
Petri Räisänen ◽  
Antti-Ilari Partanen ◽  
Risto Makkonen ◽  
Joonas Merikanto ◽  
Mikko Savolahti ◽  
...  

<p>The development of robust emission metrics to guide climate policy is more complicated for short-lived climate forcers like black carbon (BC) than for long-lived greenhouse gases like CO<sub>2</sub>. The challenge is that for short-lived climate forcers, the atmospheric concentrations, the radiative forcing (RF), and ultimately, effects on climate, depend on the location and timing of the emissions.  In the present work, the impact of emission location and season on the RF resulting from emissions of BC is studied using the NorESM1 climate model. NorESM1 is run in a configuration in which the distribution of aerosols is simulated using a state-of-the-art aerosol scheme, but the interactive aerosols are not allowed to influence the simulated meteorological conditions. Consequently, the patterns of weather are repeated identically irrespective of the assumed aerosol emissions. This allows for an essentially noise-free evaluation of the radiative forcing associated with changes in aerosol emissions, irrespective of the magnitude and spatiotemporal extent of the emission changes.</p><p>We employ the model to systematically evaluate the radiative forcing efficiency (i.e., global-mean RF divided by the emissions) of BC emissions, for various assumptions about the latitude, longitude and season of the emissions. The BC direct effect and the effect of BC on snow albedo are considered. Preliminary results from tests focusing on BC emissions in the subarctic region (60-70°N) indicate the RF efficiency depends strongly both on the timing and longitude of the emissions. The RF efficiency of emissions in spring and summer is much larger than that of emissions in fall and winter, mainly due to the stronger insolation. Furthermore, emissions in the Siberian and North American sectors have higher RF efficiency than emissions in the Atlantic and European sectors. This is largely because emissions from subarctic Siberia and North America preferentially increase the atmospheric BC burden and BC deposition in regions with seasonal snow cover persisting into late spring / early summer. This acts to increase both the BC direct RF and the RF due to BC in snow. Furthermore, long atmospheric residence times act to increase the direct RF associated with Siberian BC emissions in summer.</p><p>An implication is that the use of large-scale mean (e.g., subarctic average) emission metrics may mispresent the role of BC emissions from smaller regions like individual countries.</p>


2008 ◽  
Vol 65 (3) ◽  
pp. 970-986 ◽  
Author(s):  
Andrew G. Marshall ◽  
Oscar Alves ◽  
Harry H. Hendon

Abstract Simulations using an atmospheric model forced with observed SST climatology and the same atmospheric model coupled to a slab-ocean model are used to investigate the role of air–sea interaction on the dynamics of the MJO. Slab-ocean coupling improved the MJO in Australia’s Bureau of Meteorology atmospheric model over the Indo-Pacific warm pool by reducing its period from 70–100 to 45–70 days, thereby showing better agreement with the 30–80-day observed oscillation. Air–sea coupling improves the MJO by increasing the moisture flux in the lower troposphere prior to the passage of active convection, which acts to promote convection and precipitation on the eastern flank of the main convective center. This process is triggered by an increase in surface evaporation over positive SST anomalies ahead of the MJO convection, which are driven by the enhanced shortwave radiation in the region of suppressed convection. This in turn generates enhanced convergence into the region, which supports evaporation–wind feedback in the presence of weak background westerly winds. A subsequent increase in low-level moisture convergence acts to further moisten the lower troposphere in advance of large-scale convection in a region of reduced atmospheric pressure. This destabilizing mechanism is referred to as enhanced moisture convergence–evaporation feedback (EMCEF) and is utilized to understand the role of air–sea coupling on the observed MJO. The EMCEF mechanism also reconciles traditionally opposing ideas on the roles of frictional wave–conditional instability of the second kind (CISK) and wind–evaporation feedback. These results support the idea that the MJO is primarily an atmospheric phenomenon, with air–sea interaction improving upon, but not critical for, its existence in the model.


2008 ◽  
Vol 21 (13) ◽  
pp. 3221-3239 ◽  
Author(s):  
Massimo Bollasina ◽  
Sumant Nigam ◽  
K-M. Lau

Abstract The South Asian haze builds up from December to May, is mostly of anthropogenic origin, and absorbs part of the solar radiation. The influence of interannual variations of absorbing aerosols over the Indo-Gangetic Plain in May on the Indian summer monsoon is characterized by means of an observational analysis. Insight into how the aerosol impact is generated is also provided. It is shown that anomalous aerosol loading in late spring leads to remarkable and large-scale variations in the monsoon evolution. Excessive aerosols in May lead to reduced cloud amount and precipitation, increased surface shortwave radiation, and land surface warming. The June (and July) monsoon anomaly associated with excessive May aerosols is of opposite sign over much of the subcontinent (although with a different pattern) with respect to May. The monsoon strengthens in June (and July). The analysis suggests that the significant large-scale aerosol influence on monsoon circulation and hydroclimate is mediated by the heating of the land surface, pursuant to reduced cloudiness and precipitation in May. The finding of the significant role of the land surface in the realization of the aerosol impact is somewhat novel.


2019 ◽  
Author(s):  
Timothy W. Juliano ◽  
Zachary J. Lebo

Abstract. The North Pacific High (NPH) is a fundamental meteorological feature present during the boreal warm season. Marine boundary layer (MBL) clouds, which are persistent in this oceanic region, are influenced directly by the NPH. In this study, we combine 11 years of reanalysis and an unsupervised machine learning technique to examine the gamut of 850-hPa synoptic-scale circulation patterns. This approach, which yields the frequency at which these regimes occur, reveals two distinguishable patterns – a dominant NPH setup and a land-falling cyclone – and in between a spectrum of regimes. We then use satellite retrievals to elucidate for the first time the explicit dependence of MBL cloud properties (namely cloud droplet number concentration and cloud droplet effective radius) on 850-hPa circulation patterns over the northeast Pacific Ocean. Moreover, we find that shortwave cloud radiative forcing ranges from − 144.0 to − 117.5 W/m2, indicating that the range of MBL cloud properties must be accounted for in global and regional climate models. Our results demonstrate the value of combining reanalysis and satellite observations to help clarify the relationship between synoptic-scale dynamics and cloud microphysics.


2013 ◽  
Author(s):  
Elisabeth J. Ploran ◽  
Ericka Rovira ◽  
James C. Thompson ◽  
Raja Parasuraman

2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


e-Finanse ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 67-76
Author(s):  
Piotr Bartkiewicz

AbstractThe article presents the results of the review of the empirical literature regarding the impact of quantitative easing (QE) on emerging markets (EMs). The subject is of interest to policymakers and researchers due to the increasingly larger role of EMs in the world economy and the large-scale capital flows occurring after 2009. The review is conducted in a systematic manner and takes into consideration different methodological choices, samples and measurement issues. The paper puts the summarized results in the context of transmission channels identified in the literature. There are few distinct methodological approaches present in the literature. While there is a consensus regarding the direction of the impact of QE on EMs, its size and durability have not yet been assessed with sufficient precision. In addition, there are clear gaps in the empirical findings, not least related to relative underrepresentation of the CEE region (in particular, Poland).


Sign in / Sign up

Export Citation Format

Share Document