scholarly journals Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

2016 ◽  
Vol 73 (10) ◽  
pp. 3855-3876 ◽  
Author(s):  
Stephen D. Eckermann ◽  
Dave Broutman ◽  
Jun Ma ◽  
James D. Doyle ◽  
Pierre-Dominique Pautet ◽  
...  

Abstract On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow layer beneath a zero-wind region at z ~ 83 km. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wave fields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wave fields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward flow accelerations of ~350 m s−1 h−1 and dynamical heating rates of ~8 K h−1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter.

2013 ◽  
Vol 722 ◽  
pp. 424-436 ◽  
Author(s):  
S. Remmler ◽  
M. D. Fruman ◽  
S. Hickel

AbstractWe have performed fully resolved three-dimensional numerical simulations of a statically unstable monochromatic inertia–gravity wave using the Boussinesq equations on an $f$-plane with constant stratification. The chosen parameters represent a gravity wave with almost vertical direction of propagation and a wavelength of 3 km breaking in the middle atmosphere. We initialized the simulation with a statically unstable gravity wave perturbed by its leading transverse normal mode and the leading instability modes of the time-dependent wave breaking in a two-dimensional space. The wave was simulated for approximately 16 h, which is twice the wave period. After the first breaking triggered by the imposed perturbation, two secondary breaking events are observed. Similarities and differences between the three-dimensional and previous two-dimensional solutions of the problem and effects of domain size and initial perturbations are discussed.


2018 ◽  
Vol 18 (9) ◽  
pp. 6971-6983 ◽  
Author(s):  
Lena Schoon ◽  
Christoph Zülicke

Abstract. For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia–gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia–gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.


2009 ◽  
Vol 66 (5) ◽  
pp. 1077-1100 ◽  
Author(s):  
G. P. Klaassen

Abstract A growing body of literature has been built on the premise that kinematic advection produced by linear superpositions of sinusoidal Lagrangian gravity waves confined to lower vertical wavenumbers can provide an explanation for quasi-universal Eulerian spectral tails commonly found in the oceans and the atmosphere. Recently, Hines has established criteria delineating the circumstances in which Eulerian and Lagrangian spectra differ. For conditions in which Hines claims Lagrangian linearity and the production of quasi-universal Eulerian m−3 spectra, a kinematic advection model based on ensembles of seven nonstanding Lagrangian waves reveals the presence of gross violations of continuity and adiabaticity as well as severe departures from hydrostatic balance. Similar infractions are found for other seven-wave ensembles having a broad range of amplitudes and wavenumbers typical of saturated wave fields in the middle atmosphere. Furthermore, m−3 spectra are found only as the Lagrangian wave field approaches a singular state. The singularities in the Lagrangian to Eulerian transformation are induced by stretching deformation fields that form during the superposition of sinusoidal waves with nonparallel wave vectors. Such deformation fields are known to be unstable with respect to three-dimensional vortices. The results strongly suggest that saturated middle atmosphere wave fields are frequently accompanied by small-scale turbulent eddies.


2000 ◽  
Vol 18 (10) ◽  
pp. 1316-1324 ◽  
Author(s):  
S.-D. Zhang ◽  
F. Yi ◽  
J.-F. Wang

Abstract. By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.


2007 ◽  
Vol 25 (9) ◽  
pp. 1979-1986 ◽  
Author(s):  
L. Sun ◽  
W. Wan ◽  
F. Ding ◽  
T. Mao

Abstract. In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1) The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2) Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3) The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.


2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2008 ◽  
Vol 21 (18) ◽  
pp. 4664-4679 ◽  
Author(s):  
Manuel Pulido ◽  
John Thuburn

Abstract Using a variational technique, middle atmosphere gravity wave drag (GWD) is estimated from Met Office middle atmosphere analyses for the year 2002. The technique employs an adjoint model of a middle atmosphere dynamical model to minimize a cost function that measures the differences between the model state and observations. The control variables are solely the horizontal components of GWD; therefore, the minimization determines the optimal estimate of the drag. For each month, Met Office analyses are taken as the initial condition for the first day of the month, and also as observations for each successive day. In this way a three-dimensional GWD field is obtained for the entire year with a temporal resolution of 1 day. GWD shows a pronounced seasonal cycle. During solstices, there are deceleration regions of the polar jet centered at about 63° latitude in the winter hemisphere, with a peak of 49 m s−1 day−1 at 0.24 hPa in the Southern Hemisphere; the summer hemisphere also shows a deceleration region but much weaker, with a peak of 24 m s−1 day−1 centered at 45° latitude and 0.6 hPa. During equinoxes GWD is weak and exhibits a smooth transition between the winter and summer situation. The height and latitude of the deceleration center in both winter and summer hemispheres appear to be constant. Important longitudinal dependencies in GWD are found that are related to planetary wave activity; GWD intensifies in the exit region of jet streaks. In the lower tropical stratosphere, the estimated GWD shows a westward GWD descending together with the westward phase of the quasi-biennial oscillation. Above, GWD exhibits a semiannual pattern that is approximately out of phase with the semiannual oscillation in the zonal wind. Furthermore, a descending GWD pattern is found at those heights, similar in magnitude and sign to that in the lower stratosphere.


2021 ◽  
Author(s):  
Natalie Kaifler ◽  
Bernd Kaifler ◽  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Tyler Mixa ◽  
...  

<p>During the SOUTHTRAC-GW (Southern hemisphere Transport, Dynamics and Chemistry – Gravity Waves) field campaign, gravity waves above the Southern Andes mountains, the Drake passage and the Antarctic Peninsula were probed with airborne instruments onboard the HALO research aircraft. The Airborne Lidar for Middle Atmosphere research (ALIMA) detected particularly strong mountain waves in excess of 25 K amplitude in cross-mountain legs above the Southern Andes of research flight ST08 on 12 September 2019. The mountain waves propagated well into the mesosphere up to 65 km altitude with possible generation of smaller-scale secondary waves during wave breaking above 65 km. A superposition of mountain waves with horizontal wavelengths in the range 15-200 km and vertical wavelengths 7-24 km dominated the wave field between 18 and 65 km altitude. Vertical wavelengths predicted by the hydrostatic equation and horizontal wind from the European Center for Medium-Range Weather Forecasts’ Integrated Forecasting System are in good agreement with observed vertical wavelengths. We apply wavelet analysis to the measured temperature field along the flight track in order to identify and separate dominant scales, and estimate their relative contributions to the total gravity wave momentum flux as well as the local and zonal-mean gravity wave drag. Furthermore, we compare our observations to results obtained by Fourier ray analysis of the terrain of the Southern Andes. The Fourier model allows the investigation of the 3d-wave field and trapped waves which are not well sampled by the ALIMA instrument because of the relative alignment between the wave fronts and the flight track. These sampling biases are quantified from virtual flights through the model domain at multiple angles and taken into account in the estimation of the total momentum flux derived from ALIMA observations. The combination of high-resolution observations and model data reveals the significance of this and similar mountain wave events in the Southern Andes region for the atmospheric dynamics at ~60° S.</p>


Sign in / Sign up

Export Citation Format

Share Document