scholarly journals “Near Ground” Vertical Vorticity in Supercell Thunderstorm Models

2017 ◽  
Vol 74 (6) ◽  
pp. 1757-1766 ◽  
Author(s):  
Richard Rotunno ◽  
Paul M. Markowski ◽  
George H. Bryan

Abstract Numerical models of supercell thunderstorms produce near-ground rotation about a vertical axis (i.e., vertical vorticity) after the development of rain-cooled outflows and downdrafts. The physical processes involved in the production of near-ground vertical vorticity in simulated supercells have been a subject of discussion in the literature for over 30 years. One cause for this lengthy discussion is the difficulty in applying the principles of inviscid vorticity dynamics in a continuous fluid to the viscous evolution of discrete Eulerian simulations. The present paper reports on a Lagrangian analysis of near-ground vorticity from an idealized-supercell simulation with enhanced vertical resolution near the lower surface. The parcel that enters the low-level maximum of vertical vorticity has a history of descent during which its horizontal vorticity is considerably enhanced. In its final approach to this region, the parcel’s enhanced horizontal vorticity is tilted to produce vertical vorticity, which is then amplified through vertical stretching as the parcel rises. A simplified theoretical model is developed that exhibits these same features. The principal conclusion is that vertical vorticity at the parcel’s nadir (its lowest point), although helpful, does not need to be positive for rapid near-surface amplification of vertical vorticity.

2017 ◽  
Vol 74 (4) ◽  
pp. 1095-1104 ◽  
Author(s):  
Paul M. Markowski ◽  
Yvette P. Richardson

Abstract In idealized numerical simulations of supercell-like “pseudostorms” generated by a heat source and sink in a vertically sheared environment, a tornado-like vortex develops if air possessing large circulation about a vertical axis at the lowest model levels can be converged. This is most likely to happen if the circulation-rich air possesses only weak negative buoyancy (the circulation-rich air has a history of descent, so typically possesses at least some negative buoyancy) and is subjected to an upward-directed vertical perturbation pressure gradient force. This paper further explores the sensitivity of the development of near-surface vertical vorticity to the horizontal position of the heat sink. Shifting the position of the heat sink by only 2–3 km can significantly influence vortex intensity by altering both the baroclinic generation of circulation and the buoyancy of circulation-rich air. Many of the changes in the pseudostorms that arise from shifting the position of the heat sink would be difficult to anticipate. The sensitivity of the pseudostorms to heat sink position probably at least partly explains the well-known sensitivity of near-surface vertical vorticity development to the microphysics parameterizations in more realistic supercell storm simulations, as well as some of the failures of actual supercells to produce tornadoes in seemingly favorable environments.


2020 ◽  
Vol 148 (10) ◽  
pp. 4281-4297 ◽  
Author(s):  
Christian H. Boyer ◽  
Johannes M. L. Dahl

AbstractDespite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting of horizontal vorticity and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching, and therefore this vorticity can be effectively tilted into the vertical.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Alexis P. Rodriguez ◽  
Kenneth L. Tanaka ◽  
Ali M. Bramson ◽  
Gregory J. Leonard ◽  
Victor R. Baker ◽  
...  

AbstractThe clockwise spiral of troughs marking the Martian north polar plateau forms one of the planet’s youngest megastructures. One popular hypothesis posits that the spiral pattern resulted as troughs underwent poleward migration. Here, we show that the troughs are extensively segmented into enclosed depressions (or cells). Many cell interiors display concentric layers that connect pole- and equator-facing slopes, demonstrating in-situ trough erosion. The segmentation patterns indicate a history of gradual trough growth transversely to katabatic wind directions, whereby increases in trough intersections generated their spiral arrangement. The erosional event recorded in the truncated strata and trough segmentation may have supplied up to ~25% of the volume of the mid-latitude icy mantles. Topographically subtle undulations transition into troughs and have distributions that mimic and extend the troughs’ spiraling pattern, indicating that they probably represent buried trough sections. The retention of the spiral pattern in surface and subsurface troughs is consistent with the megastructure’s stabilization before its partial burial. A previously suggested warm paleoclimatic spike indicates that the erosion could have occurred as recently as ~50 Ka. Hence, if the removed ice was redeposited to form the mid-latitude mantles, they could provide a valuable source of near-surface, clean ice for future human exploration.


Author(s):  
Battista Grosso ◽  
Valentina Dentoni ◽  
Augusto Bortolussi

AbstractUnderground quarrying is rarely adopted for granite extraction due to the difficulties in the implementation of traditional technologies (drilling and explosive). As alternative to drilling and explosive, the combination of diamond wire and water jet seems to be the most promising available technology. The cutting performance achievable with the water jet technology depends on the operative parameters, the material characteristics and the state of stress within the rock massif. To assess the effect of the state of stress on the cutting rate, laboratory tests have been performed with an oscillating water jet machine on granite samples subjected to a static load. The stress distribution in the layer of rock to be removed has been evaluated by numerical simulation with the FLAC code (Fast Lagrangian Analysis of Continua). The correlation between the results of the cutting tests and the numerical models of the rock samples has been inferred. Starting from a conceptual model, which theoretically describes the relationship between the cutting rate and the stress, a step function was defined that indicates the ranges of stress where predefined values of the cutting rate are workable.


2006 ◽  
Vol 36 (5) ◽  
pp. 827-846 ◽  
Author(s):  
Toru Miyama ◽  
Julian P. McCreary ◽  
Debasis Sengupta ◽  
Retish Senan

Abstract Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.


2020 ◽  
Author(s):  
Valère Lambert ◽  
Nadia Lapusta

Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need for re-examining the assumption of pre-determined frictional breakdown energy common in dynamic rupture modeling and for better understanding of the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes.


The Luna 24 mission sampled a variety of lithologies in a single core. Two of these lithologies, a metabasalt (24196) and a crushed basalt (24170) have been subjected to 40 Ar- 39 Ar dating experiments to determine if metamorphism significantly post-dated basalt extrusion. The metabasalt exhibited symptoms of both solar wind contamination and 39 Ar recoil; in view of these effects an age may only be defined by making extreme assumptions. High temperature release fractions give an age of 3.36 ± 0.11 Ga, while the cumulate 40 Ar/ 39 Ar ratio gives 3.14 ± 0.16 Ga; both are comparable with the basalt (24170) age and suggest that the metabasalts represent thermally penecontemporaneously metamorphosed flow margins, rather than the products of later impact events. The feldspar from the microgabbro yielded an age of 3.37 ± 0.20 Ga. The ratios of cosmogenic 38 Ar to Ca in pyroxene and feldspar are within error identical, indicating that 38 Ar production from Fe in the pyroxene is small. This is the first definitive use of Fe-produced 38 Ar as a spectral hardness indicator and implies that the microgabbro received much of its cosmic ray exposure at depth in the regolith. By taking account of the dependence of 38 Ar production rate with depth it is inferred that the microgabbro layer was deposited within the last 350-500 Ma. By implication, the regolith layers above the microgabbro at the Luna 24 site are younger. The metabasalt has an identical cosmogenic 38 Ar/Ca ratio; however, because of the decrease of production rate with depth it could have experienced a 20 % pre-exposure before deposition of the microgabbro. Spectral information has also been obtained from a reappraisal of published argon data and indicates a much harder spectrum for a near surface sample. The way in which the Ca- and Fe-produced 38 Ar e follow the broad trend of the instantaneous production profiles suggests that the regolith at the Luna 24 site has been relatively undisturbed for much of the last 300 Ma.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B287-B294 ◽  
Author(s):  
Jamie K. Pringle ◽  
Peter Styles ◽  
Claire P. Howell ◽  
Michael W. Branston ◽  
Rebecca Furner ◽  
...  

The area around the town of Northwich in Cheshire, U. K., has a long history of catastrophic ground subsidence caused by a combination of natural dissolution and collapsing abandoned mine workings within the underlying Triassic halite bedrock geology. In the village of Marston, the Trent and Mersey Canal crosses several abandoned salt mine workings and previously subsiding areas, the canal being breached by a catastrophic subsidence event in 1953. This canal section is the focus of a long-term monitoring study by conventional geotechnical topographic and microgravity surveys. Results of 20 years of topographic time-lapse surveys indicate specific areas of local subsidence that could not be predicted by available site and mine abandonment plan and shaft data. Subsidence has subsequently necessitated four phases of temporary canal bank remediation. Ten years of microgravity time-lapse data have recorded major deepening negative anomalies in specific sections that correlate with topographic data. Gravity 2D modeling using available site data found upwardly propagating voids, and associated collapse material produced a good match with observed microgravity data. Intrusive investigations have confirmed a void at the major anomaly. The advantages of undertaking such long-term studies for near-surface geophysicists, geotechnical engineers, and researchers working in other application areas are discussed.


Author(s):  
Gus Jeans ◽  
Dave Quantrell ◽  
Andrew Watson ◽  
Laure Grignon ◽  
Gil Lizcano

Engineering design codes specify a variety of different relationships to quantify vertical variations in wind speed, gust factor and turbulence intensity. These are required to support applications including assessment of wind resource, operability and engineering design. Differences between the available relationships lead to undesirable uncertainty in all stages of an offshore wind project. Reducing these uncertainties will become increasingly important as wind energy is harnessed in deeper waters and at lower costs. Installation of a traditional met mast is not an option in deep water. Reliable measurement of the local wind, gust and turbulence profiles from floating LiDAR can be challenging. Fortunately, alternative data sources can provide improved characterisation of winds at offshore locations. Numerical modelling of wind in the lower few hundred metres of the atmosphere is generally much simpler at remote deepwater locations than over complex onshore terrain. The sophistication, resolution and reliability of such models is advancing rapidly. Mesoscale models can now allow nesting of large scale conditions to horizontal scales less than one kilometre. Models can also provide many decades of wind data, a major advantage over the site specific measurements gathered to support a wind energy development. Model data are also immediately available at the start of a project at relatively low cost. At offshore locations these models can be validated and calibrated, just above the sea surface, using well established satellite wind products. Reliable long term statistics of near surface wind can be used to quantify winds at the higher elevations applicable to wind turbines using the wide range of existing standard profile relationships. Reduced uncertainty in these profile relationships will be of considerable benefit to the wider use of satellite and model data sources in the wind energy industry. This paper describes a new assessment of various industry standard wind profile relationships, using a range of available met mast datasets and numerical models.


2017 ◽  
Vol 145 (11) ◽  
pp. 4381-4399 ◽  
Author(s):  
Aaron P. Sims ◽  
Kiran Alapaty ◽  
Sethu Raman

Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain–Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.


Sign in / Sign up

Export Citation Format

Share Document