scholarly journals An Observational Overview of Dusty Deep Convection in Martian Dust Storms

2019 ◽  
Vol 76 (11) ◽  
pp. 3299-3326 ◽  
Author(s):  
Nicholas G. Heavens ◽  
David M. Kass ◽  
James H. Shirley ◽  
Sylvain Piqueux ◽  
Bruce A. Cantor

Abstract Deep convection, as used in meteorology, refers to the rapid ascent of air parcels in Earth’s troposphere driven by the buoyancy generated by phase change in water. Deep convection undergirds some of Earth’s most important and violent weather phenomena and is responsible for many aspects of the observed distribution of energy, momentum, and constituents (particularly water) in Earth’s atmosphere. Deep convection driven by buoyancy generated by the radiative heating of atmospheric dust may be similarly important in the atmosphere of Mars but lacks a systematic description. Here we propose a comprehensive framework for this phenomenon of dusty deep convection (DDC) that is supported by energetic calculations and observations of the vertical dust distribution and exemplary dusty deep convective structures within local, regional, and global dust storm activity. In this framework, DDC is distinct from a spectrum of weaker dusty convective activity because DDC originates from preexisting or concurrently forming mesoscale circulations that generate high surface dust fluxes, oppose large-scale horizontal advective–diffusive processes, and are thus able to maintain higher dust concentrations than typically simulated. DDC takes two distinctive forms. Mesoscale circulations that form near Mars’s highest volcanoes in dust storms of all scales can transport dust to the base of the upper atmosphere in as little as 2 h. In the second distinctive form, mesoscale circulations at low elevations within regional and global dust storm activity generate freely convecting streamers of dust that are sheared into the middle atmosphere over the diurnal cycle.

2017 ◽  
Vol 74 (4) ◽  
pp. 1011-1037 ◽  
Author(s):  
N. G. Heavens

Abstract Dust storms are Mars’s most notable meteorological phenomenon, but many aspects of their structure and dynamics remain mysterious. The cloud-top appearance of dust storms in visible imagery varies on a continuum between diffuse/hazy and textured. Textured storms contain cellular structure and/or banding, which is thought to indicate active lifting within the storm. Some textured dust storms may contain the deep convection that generates the detached dust layers observed high in Mars’s atmosphere. This study focuses on textured local dust storms in a limited area within Northeast (NE) Amazonis and Southwest (SW) Arcadia Planitiae (25°–40°N, 155°–165°W) using collocated observations by instruments on board the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) satellites. In northern fall and winter, this area frequently experiences dust storms with a previously unreported ruffled texture that resembles wide, mixed-layer rolls in Earth’s atmosphere, a resemblance that is supported by high-resolution active sounding and passive radiometry in both the near- and thermal infrared. These storms are mostly confined within the atmospheric boundary layer and are rarely sources of detached dust layers. The climatology and structure of these storms are thus consistent with an underlying driver of cold-air-advection events related to the passage of strong baroclinic waves. While the properties of the studied region may be ideal for detecting these structures and processes, the dynamics here are likely relevant to dust storm activity elsewhere on Mars.


2011 ◽  
Vol 29 (9) ◽  
pp. 1647-1654 ◽  
Author(s):  
S. K. Das ◽  
A. Taori ◽  
A. Jayaraman

Abstract. Lower atmospheric perturbations often produce measurable effects in the middle and upper atmosphere. The present study demonstrates the response of the middle atmospheric thermal structure to the significant enhancement of the lower atmospheric heating effect caused by dust storms observed over the Thar Desert, India. Our study from multi-satellite observations of two dust storm events that occurred on 3 and 8 May 2007 suggests that dust storm events produce substantial changes in the lower atmospheric temperatures as hot spots which can become sources for gravity waves observed in the middle atmosphere.


2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2020 ◽  
Author(s):  
Bo Li ◽  
Jiang Zhang ◽  
Zongyu Yue ◽  
Peiwen Yao ◽  
Chenfan Li ◽  
...  

Abstract Dust storms, observed in all seasons, are among the most momentous Mars atmosphere activities. The Entry-Descent-Landing (EDL) activity of a Martian landing mission is influenced by local atmospheric conditions, especially the dust storm activity probability. It is of great significance to know well the dust storm situation that China's first Mars mission (Tianwen-1) may encounter in EDL season in the Chryse area, one of the tentative landing areas. Firstly, based on four Martian years’ Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGMs), 1172 dust storms were identified within Chryse’s 1600 km radius ring with their shape parameters extracted, including center, range and area. Secondly, the daily mean dust storm probability was calculated binned by 1° of solar longitude in the Chryse area during EDL season. Dust storm activity frequency was closely interrelated with the seasonal ebb and flow of the arctic polar ice cap, consequently, most of dust storms occurring in either the cap’s grow or the recession. The dust storm activity in the Chryse area mainly came from the northern polar cap region, Acidalia and Chryse, with some contribution from the southern hemisphere (Argyre and Bosprous) northward. Thirdly, we divided the Chryse area into many square grids of 0.5° and computed the average occurrence probability of dust storm in each grid during EDL season. The dust storm activity probability in space was also in-homogeneous, low in the west and south but high in the east and north, which was mainly affected by three factors: topography, the origin and the path of dust storm sequence. Based on Empirical orthogonal function (EOF) analysis, of the storms in the Chryse area we’ve discovered, 40.5% are cap-edge storms in the northern hemisphere and 17.5% are textured dust storms. Finally, according to the temporal and spatial probability of dust storm activity in the Chryse area during EDL season, we held that the preferred landing time of the Tianwen-1 mission in 2021 was in Ls=18°-65° and three preferred landing areas were selected with low dust storm probability.


2020 ◽  
Author(s):  
Shohei Aoki ◽  
AnnCarine Vandaele ◽  
Frank Daerden ◽  
Geronimo Villanueva ◽  
Ian Thomas ◽  
...  

<p>Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO) started the science measurements on 21 April, 2018. We present results on the retrievals of water vapor vertical profiles in the Martian atmosphere from the first Mars year measurements of the TGO/NOMAD.</p><p>NOMAD is a spectrometer operating in the spectral ranges between 0.2 and 4.3 μm onboard ExoMars TGO. NOMAD has 3 spectral channels: a solar occultation channel (SO – Solar Occultation; 2.3–4.3 μm), a second infrared channel capable of nadir, solar occultation, and limb sounding (LNO – Limb Nadir and solar Occultation; 2.3–3.8 μm), and an ultraviolet/visible channel (UVIS – Ultraviolet and Visible Spectrometer, 200–650 nm). The infrared channels (SO and LNO) have high spectral resolution (λ/dλ~10,000–20,000) provided by an echelle grating used in combination with an Acousto Optic Tunable Filter (AOTF) which selects diffraction orders. The concept of the infrared channels are derived from the Solar Occultation in the IR (SOIR) instrument onboard Venus Express (VEx). The sampling rate for the solar occultation measurement is 1 second, which provides better vertical sampling step (~1 km) with higher resolution (~2 km) from the surface to 200 km. Thanks to the instantaneous change of the observing diffraction orders achieved by the AOTF, the SO channel is able to measure five or six different diffraction orders per second in solar occultation mode. In this study, we analyze the solar occultation measurements at diffraction order 134 (3011-3035 cm<sup>-1</sup>), order 136 (3056-3080 cm<sup>-1</sup>) and 168 (3775-3805 cm<sup>-1</sup>) acquired by the SO channel in order to investigate H<sub>2</sub>O vertical profiles.</p><p>Knowledge of the water vapor vertical distribution is important to understand the water cycle and escape processes. Solar occultation measurements by the two spectrometers onboard TGO - NOMAD and Atmospheric Chemistry Suite (ACS) - allow us to monitor daily the water vapor vertical profiles through one whole Martian Year and obtain a latitudinal map for every ~20° of Ls. In 2018, for the first time after 2007, a global dust storm occurred on Mars. It lasted for more than two months (from June to August). Moreover, following the global dust storm, a regional dust storm occurred in January 2019. TGO began its science operations on 21 April 2018. NOMAD observations therefore fully cover the period before/during/after the global and regional dust storms and offer a unique opportunity to study the trace gases distributions during such events. We have analyzed those datasets and found a significant increase of water vapor abundance in the middle atmosphere (40-100 km) during the global dust storm from June to mid-September 2018 and the regional dust storm in January 2019. In particular, water vapor reaches very high altitudes, at least 100 km, during the global dust storm (Aoki et al., 2019, Journal of Geophysical Research, Volume124, Issue12, Pages 3482-3497, doi:10.1029/2019JE006109). A GCM simulation explained that dust storm related increases of atmospheric temperatures suppress the hygropause, hence reducing ice cloud formation and so allowing water vapor to extend into the middle atmosphere (Neary et al., 2020, Geophysical Research Letters, 47, e2019GL084354., doi: 10.1029/2019GL084354). The current study presents the results obtained when considering the extended dataset, which covers a full Martian year. The extended dataset includes the recent aphelion season that involves interesting phenomena such as sublimation of water vapor from the northern polar cap and formation of the equatorial cloud belt, and is known as a key period to understand the large north-south hemispheric asymmetries of Mars water vapor. Yet, until now, only few papers reported the water vapor vertical distribution during the aphelion season. The extended dataset also includes the period when the global dust storm occurred the year before; this will allow us to compare the water vapor distributions under global dust storm conditions with those found during non-global dust storm years. In the presentation, we will discuss the H<sub>2</sub>O vertical profiles as well as the aerosols vertical distribution retrieved from the first full Martian year measurements of the TGO/NOMAD.</p><!-- COMO-HTML-CONTENT-END --> <p class="co_mto_htmlabstract-citationHeader"> <strong class="co_mto_htmlabstract-citationHeader-intro">How to cite:</strong> Aoki, S., Vandaele, A., Daerden, F., Villanueva, G., Thomas, I., Erwin, J., Trompet, L., Robert, S., Neary, L., Viscardy, S., Piccialli, A., Liuzzi, G., Crismani, M., Clancy, T., Smith, M., Ristic, B., Lopez-Valverde, M.-A., Patel, M., Bellucci, G., and Lopez-Moreno, J.-J.: Water vapor vertical profiles on Mars: Results from the first full Mars Year of TGO/NOMAD science operations, Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-392, 2020 </p>


2007 ◽  
Vol 7 (5) ◽  
pp. 1313-1332 ◽  
Author(s):  
J. Lelieveld ◽  
C. Brühl ◽  
P. Jöckel ◽  
B. Steil ◽  
P. J. Crutzen ◽  
...  

Abstract. The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv) periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.


2010 ◽  
Vol 23 (8) ◽  
pp. 2030-2046 ◽  
Author(s):  
Yukari N. Takayabu ◽  
Shoichi Shige ◽  
Wei-Kuo Tao ◽  
Nagio Hirota

Abstract Three-dimensional distributions of the apparent heat source (Q1) − radiative heating (QR) estimated from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) utilizing the spectral latent heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated Q1 − QR averaged over the tropical oceans is estimated as ∼72.6 J s−1 (∼2.51 mm day−1) and that over tropical land is ∼73.7 J s−1 (∼2.55 mm day−1) for 30°N–30°S. It is shown that nondrizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems: deep systems and congestus. A rough estimate of the shallow-heating contribution against the total heating is about 46.7% for the average tropical oceans, which is substantially larger than the 23.7% over tropical land. Although cumulus congestus heating linearly correlates with SST, deep-mode heating is dynamically bounded by large-scale subsidence. It is notable that a substantial amount of rain, as large as 2.38 mm day−1 on average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that, even in the region with SSTs warmer than 28°C, large-scale subsidence effectively suppresses the deep convection, with the remaining heating by congestus clouds. The results support that the entrainment of mid–lower-tropospheric dry air, which accompanies the large-scale subsidence, is the major factor suppressing the deep convection. Therefore, a representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and the resultant large-scale circulation.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 433
Author(s):  
Bo Li ◽  
Zongyu Yue ◽  
Shaojie Qu ◽  
Peiwen Yao ◽  
Xiaohui Fu ◽  
...  

Dust storms, observed in all seasons, are among the most momentous of Mars’ atmospheric activities. The Entry–Descent–Landing (EDL) activity of a Martian landing mission is influenced by local atmospheric conditions, especially the probability of dust storm activity. Chryse Planitia, featuring many of the largest and most prominent outflow channels and possible mud volcanoes, is an important target site for current and future Mars landing missions. It is of great significance to understand that a Mars landing probe may encounter a dust storm situation during EDL season in the Chryse Planitia. In this study, based on four Martian years, Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGMs), 1172 dust storms were identified within Chryse’s 1600 km-radius ring. Secondly, the daily mean dust storm probability was calculated, binned by 1° of solar longitude in the Chryse landing area. The two active periods of dust storm activity are Ls = 177–239° and Ls = 288–4°, with an average daily mean dust storm probability of 9.5% and 4.1%. Dust storm activity frequency is closely interrelated with the seasonal ebb and flow of the north polar ice cap; consequently, most dust storms occur in either the cap’s growth or recession phase. We divided the Chryse landing area into square grids of 0.5° and computed the average probability of dust storm occurrence in each grid, which ranged from 0.19% to 2.42%, with an average of 1.22%. The dust storm activity probability in space was also inhomogeneous—low in the west and south but high in the east and north—which was mainly affected by the origin and the path of dust storm sequences. Based on empirical orthogonal function (EOF) analysis of storms in the Chryse area, 40.5% are cap-edge storms in the northern hemisphere. Finally, we concluded that the preferred time of a Mars landing mission is Ls = 18–65° in the Chryse Planitia, and three preferred landing areas were selected with low dust storm probability.


2019 ◽  
Author(s):  
Ashok Kumar Pokharel ◽  
Michael L. Kaplan

Abstract. Based on the large scale transport of dust driven by the winds parallel to the mountains in the Harmattan, Saudi Arabian, and Bodélé Depression dust storms cases, a detailed study of the generation of Kelvin Waves and its possible role in organizing these dust storms and large scale dust transport was accomplished. For this study, observational and numerical model analyses were done in an in depth manner. For this, MERRA reanalysis datasets, WRF simulated high resolution variables, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, and MERRA-2 dust scattering AOD modelling plots, surface observations, and rawinsonde soundings were analyzed for each of these three case studies. We found there were meso-β scale (horizontal length scale of 20–200 km) adjustment processes resulting in Kelvin waves only in the Harmattan and the Bodélé Depression cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. We find that this Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale (meso-α to synoptic).


2011 ◽  
Vol 11 (5) ◽  
pp. 15573-15629 ◽  
Author(s):  
H. Morrison ◽  
W. W. Grabowski

Abstract. This paper presents results from 240-member ensemble simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Simulations using a two-dimensional cloud system-resolving model are run with pristine, polluted, or highly polluted aerosol conditions and large-scale forcing from a 6-day period of active monsoon conditions during the 2006 Tropical Warm Pool – International Cloud Experiment (TWP-ICE). Domain-mean surface precipitation is insensitive to aerosols primarily because the large-scale forcing is prescribed and dominates the water and static energy budgets. The spread of the top-of-atmosphere (TOA) shortwave and longwave radiative fluxes among different ensemble members for the same aerosol loading is surprisingly large, exceeding 25 W m−2 even when averaged over the 6-day period. This variability is caused by random fluctuations in the strength and timing of individual deep convective events. The ensemble approach demonstrates a small weakening of convection averaged over the 6-day period in the polluted simulations compared to pristine. Despite this weakening, the cloud top heights and anvil ice mixing ratios are higher in polluted conditions. This occurs because of the larger concentrations of cloud droplets that freeze, leading directly to higher ice particle concentrations, smaller ice particle sizes, and smaller fall velocities compared to simulations with pristine aerosols. Weaker convection in polluted conditions is a direct result of the changes in anvil ice characteristics and subsequent upper-tropospheric radiative heating and weaker tropospheric destabilization. Such a conclusion offers a different interpretation of recent satellite observations of tropical deep convection in pristine and polluted environments compared to the hypothesis of aerosol-induced convective invigoration. Sensitivity tests using the ensemble approach with modified microphysical parameters or domain configuration (horizontal gridlength, domain size) produce results that are similar to baseline, although there are quantitative differences in estimates of aerosol impacts on TOA radiative fluxes.


Sign in / Sign up

Export Citation Format

Share Document