Quasigeostrophic Controls on Precipitating Ascent in Monsoon Depressions

2019 ◽  
Vol 77 (4) ◽  
pp. 1213-1232 ◽  
Author(s):  
Varun S. Murthy ◽  
William R. Boos

Abstract South Asian monsoon depressions are convectively coupled cyclonic vortices that form and intensify in a region of easterly vertical shear of the horizontal wind. Observations of maximum precipitation downshear of the cyclonic center have led to prior theories of quasigeostrophic (QG) control of moist convection in these storms. This study examines the interaction between adiabatic QG lifting and moist convection in monsoon depressions using an atmospheric reanalysis and idealized model. Inversion of the QG omega equation in the reanalysis shows that in the downshear, heavily precipitating region, adiabatic QG ascent, due to advection of vorticity and temperature, is comparable to diabatic ascent in the lower troposphere, while diabatic ascent dominates in the middle and upper troposphere. The causal influence of adiabatic QG lifting on precipitating ascent in monsoon depressions is then examined in the column QG modeling framework, where moist convection evolves in the presence of vorticity and temperature advection. The heavy observed precipitation rates are only simulated when moist convective heating amplifies QG ascent, with this interaction accounting for roughly 40% of the increase in precipitation relative to the basic state. Another 40% of this increase is produced by enhanced surface wind speed in the surface enthalpy flux parameterization, which represents the effect of cyclonic winds in the monsoon depression. Horizontal advection of the mean-state poleward moisture gradient accounts for the remaining 20% of the precipitation increase. In the upshear region, adiabatic QG subsidence and horizontal moisture advection both suppress precipitation, and are opposed by wind-enhanced surface enthalpy fluxes.

2014 ◽  
Vol 71 (4) ◽  
pp. 1276-1291 ◽  
Author(s):  
Klaus Dolling ◽  
Gary M. Barnes

Abstract In 2001, the National Oceanic and Atmospheric Administration and the National Aeronautical and Space Administration marshaled their resources to sample Hurricane Humberto for 3 successive days during the fourth Convection and Moisture Experiment (CAMEX-4). Humberto developed from a tropical storm into a category-2 hurricane despite the deep-layer vertical shear of the environmental horizontal wind (VWS) increasing markedly on the second and third days of sampling. As exhibited in earlier studies, the eyewall convection developed an azimuthal wavenumber-1 (n = 1) asymmetry as the VWS increased. Horizontal divergence and vertical stability within 100 km of the eye exhibited persistent relationships to the VWS vector. The warm core evolved in an unexpected way. The warm anomaly was initially located in the lower troposphere and built upward as the storm intensified. The maximum temperature anomaly remained in the lower troposphere on all 3 days while the development of the upper-tropospheric warm anomaly appeared to be inhibited by the increasing VWS and the entrainment of dry environmental air into the core at midlevels. The warm core of this higher-latitude (33°N) storm displayed large differences when compared to most numerical simulations, wind-induced surface heat exchange theory, and observations of tropical cyclones in the deep tropics acquired nearly 50 years ago. The results were similar to some recent numerical simulations.


2017 ◽  
Vol 145 (8) ◽  
pp. 2971-2992 ◽  
Author(s):  
Jesse Norris ◽  
Geraint Vaughan ◽  
David M. Schultz

Precipitation patterns along cold fronts can exhibit a variety of morphologies including narrow cold-frontal rainbands and core-and-gap structures. A three-dimensional primitive equation model is used to investigate alongfront variability of precipitation in an idealized baroclinic wave. Along the poleward part of the cold front, a narrow line of precipitation develops. Along the equatorward part of the cold front, precipitation cores and gaps form. The difference between the two evolutions is due to differences in the orientation of vertical shear near the front in the lower troposphere: at the poleward end the along-frontal shear is dominant and the front is in near-thermal wind balance, while at the equatorward end the cross-frontal shear is almost as large. At the poleward end, the thermal structure remains erect with the front well defined up to the midtroposphere, hence updrafts remain erect and precipitation falls in a continuous line along the front. At the equatorward end, the cores form as undulations appear in both the prefrontal and postfrontal lighter precipitation, associated with vorticity maxima moving along the front on either side. Cross-frontal winds aloft tilt updrafts, so that some precipitation falls ahead of the surface cold front, forming the cores. Sensitivity simulations are also presented in which SST and roughness length are varied between simulations. Larger SST reduces cross-frontal winds aloft and leads to a more continuous rainband. Larger roughness length destroys the surface wind shift and thermal gradient, allowing mesovortices to dominate the precipitation distribution, leading to distinctive and irregularly shaped, quasi-regularly spaced precipitation maxima.


Author(s):  
James N. Marquis ◽  
Adam C. Varble ◽  
Paul Robinson ◽  
T. Connor. Nelson ◽  
Katja Friedrich

AbstractData from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms.The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.


2017 ◽  
Vol 74 (4) ◽  
pp. 1249-1271 ◽  
Author(s):  
H. Bellenger ◽  
R. Wilson ◽  
J. L. Davison ◽  
J. P. Duvel ◽  
W. Xu ◽  
...  

Abstract A large set of soundings obtained in the Indian Ocean during three field campaigns is used to provide statistical characteristics of tropospheric turbulence and its link with gravity wave (GW) activity. The Thorpe method is used to diagnose turbulent regions of a few hundred meters depth. Above the mixed layer, turbulence frequency varies from ~10% in the lower troposphere up to ~30% around 12-km height. GWs are captured by their signature in horizontal wind, normalized temperature, and balloon vertical ascent rate. These parameters emphasize different parts of the wave spectrum from longer to shorter vertical wavelengths. Composites are constructed in order to reveal the vertical structure of the waves and their link with turbulence. The relatively longer-wavelength GWs described by their signature in temperature (GWTs) are more active in the lower troposphere, where they are associated with clear variations in moisture. Turbulence is then associated with minimum static stability and vertical shear, stressing the importance of the former and the possibility of convective instability. Conversely, the short waves described by their signature in balloon ascent rate (GWws) are detected primarily in the upper troposphere, and their turbulence is associated with a vertical shear maximum, suggesting the importance of dynamic instability. Furthermore, GWws appear to be linked with local convection, whereas GWTs are more active in suppressed and dry phases in particular of the Madden–Julian oscillation. These waves may be associated with remote sources, such as organized convection or local fronts, such as those associated with dry-air intrusions.


2020 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Mark Schlutow ◽  
Georg S. Voelker

Abstract We investigate strongly nonlinear stationary gravity waves which experience refraction due to a thin vertical shear layer of horizontal background wind. The velocity amplitude of the waves is of the same order of magnitude as the background flow and hence the self-induced mean flow alters the modulation properties to leading order. In this theoretical study, we show that the stability of such a refracted wave depends on the classical modulation stability criterion for each individual layer, above and below the shearing. Additionally, the stability is conditioned by novel instability criteria providing bounds on the mean-flow horizontal wind and the amplitude of the wave. A necessary condition for instability is that the mean-flow horizontal wind in the upper layer is stronger than the wind in the lower layer.


2015 ◽  
Vol 28 (3) ◽  
pp. 1126-1147 ◽  
Author(s):  
Dimitry Smirnov ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
Young-Oh Kwon ◽  
Claude Frankignoul

Abstract The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.


2020 ◽  
Vol 21 (12) ◽  
pp. 2829-2853 ◽  
Author(s):  
Marouane Temimi ◽  
Ricardo Fonseca ◽  
Narendra Nelli ◽  
Michael Weston ◽  
Mohan Thota ◽  
...  

AbstractA thorough evaluation of the Weather Research and Forecasting (WRF) Model is conducted over the United Arab Emirates, for the period September 2017–August 2018. Two simulations are performed: one with the default model settings (control run), and another one (experiment) with an improved representation of soil texture and land use land cover (LULC). The model predictions are evaluated against observations at 35 weather stations, radiosonde profiles at the coastal Abu Dhabi International Airport, and surface fluxes from eddy-covariance measurements at the inland city of Al Ain. It is found that WRF’s cold temperature bias, also present in the forcing data and seen almost exclusively at night, is reduced when the surface and soil properties are updated, by as much as 3.5 K. This arises from the expansion of the urban areas, and the replacement of loamy regions with sand, which has a higher thermal inertia. However, the model continues to overestimate the strength of the near-surface wind at all stations and seasons, typically by 0.5–1.5 m s−1. It is concluded that the albedo of barren/sparsely vegetated regions in WRF (0.380) is higher than that inferred from eddy-covariance observations (0.340), which can also explain the referred cold bias. At the Abu Dhabi site, even though soil texture and LULC are not changed, there is a small but positive effect on the predicted vertical profiles of temperature, humidity, and horizontal wind speed, mostly between 950 and 750 hPa, possibly because of differences in vertical mixing.


Author(s):  
Yuya Hamaguchi ◽  
Yukari N. Takayabu

AbstractIn this study, the statistical relationship between tropical upper-tropospheric troughs (TUTTs) and the initiation of summertime tropical-depression type disturbances (TDDs) over the western and central North Pacific is investigated. By applying a spatiotemporal filter to the 34-year record of brightness temperature and using JRA-55 reanalysis products, TDD-event initiations are detected and classified as trough-related (TR) or non-trough-related (non-TR). The conventional understanding is that TDDs originate primarily in the lower-troposphere; our results refine this view by revealing that approximately 30% of TDDs in the 10°N-20°N latitude ranges are generated under the influence of TUTTs. Lead-lag composite analysis of both TR- and non-TR-TDDs clarifies that TR-TDDs occur under relatively dry and less convergent large-scale conditions in the lower-troposphere. This result suggests that TR-TDDs can form in a relatively unfavorable low-level environment. The three-dimensional structure of the wave activity flux reveals southward and downward propagation of wave energy in the upper troposphere that converges at the mid-troposphere around the region where TR-TDDs occur, suggesting the existence of extratropical forcing. Further, the role of dynamic forcing associated with the TUTT on the TR-TDD-initiation is analyzed using the quasi-geostrophic omega equation. The result reveals that moistening in the mid-to-upper troposphere takes place in association with the sustained dynamical ascent at the southeast side of the TUTT, which precedes the occurrence of deep convective heating. Along with a higher convective available potential energy due to the destabilizing effect of TUTTs, the moistening in the mid-to-upper troposphere also helps to prepare the environment favorable to TDDs initiation.


2019 ◽  
Vol 147 (12) ◽  
pp. 4653-4680 ◽  
Author(s):  
Paul J. Neiman ◽  
Daniel J. Gottas ◽  
Allen B. White

Abstract This observational study of westward-directed gap flows through the Columbia River Gorge uses three radar wind profilers during two winter seasons between October 2015 and April 2017, with a focus on the gap-exit region at Troutdale, Oregon. Of the 92 gap-flow events identified at Troutdale, the mean duration was 38.5 h, the mean gap-jet speed was 12 m s−1, and the mean gap-flow depth was 570 m MSL. The mean gap-jet height and gap-flow depth were situated below the top of the inner gorge, while a maximum depth of 1087 m MSL was contained within the gorge’s outer-wall rim. The mean gap-flow depth was deepest in the cold-air source region east of the gorge and decreased westward to the coast. Strong gap-flow events were longer lived, deeper, and capped by stronger vertical shear than their weak counterparts, and strong (weak) events were forced primarily by a cold-interior anticyclone (offshore cyclone). Deep gap-flow events were longer lived, stronger, and had weaker capping vertical shear than shallow events, and represented a combination of gap-flow and synoptic forcing. Composite temporal analysis shows that gap-flow strength (depth) was maximized midevent (early event), freezing rain was most prevalent during the second half of the event, and accumulated precipitation was greatest late-event. Gap-flow events tended to begin (end) during the evening (morning) hours and were most persistent in January. Surface wind gusts and snow occurrences around Portland, Oregon, were associated primarily with the deepest gap flows, whereas freezing rain occurred predominantly during shallow gap flows.


2013 ◽  
Vol 15 (2) ◽  
pp. 241-253 ◽  

The complex terrain basin of Amyntaio – Ptolemais – Kozani in Western Macedonia of Greece is an area characterized by increased industrial activity and therefore it demands continuous and assiduous environmental monitoring. A prolonged particulate matter air pollution episode was recorded in the area during November 2009. Basic meteorological aspects are analyzed, during the episode period. Daily and hourly PM10 and PM2.5 concentration measurements were used along with surface and lower atmosphere hourly meteorological parameters from 13 measuring stations. The observational data were supported by data produced by the meteorological component of an air pollution model. The overall analysis showed that the episode was primarily the result of the synoptic setting of the middle and lower troposphere. An Omega blocking pattern which gradually transformed to a high-over-low pattern prevailed over central and southern Europe during the episode’s period. The examination of the vertical wind field in the lower troposphere and appropriate stability indices, revealed a continuous absence of significant convection. The weak horizontal wind field near the surface and the reduced mixing height combined with the lack of synoptic forcing resulted in the trapping of the pollutants in the lower troposphere and the recording of increased airborne particulate matter concentrations. The radical change of the synoptic setting in the first days of December marked the end of the episode.


Sign in / Sign up

Export Citation Format

Share Document