scholarly journals North Atlantic Storm-Track Sensitivity to Warming Increases with Model Resolution

2015 ◽  
Vol 28 (11) ◽  
pp. 4513-4524 ◽  
Author(s):  
Jeff Willison ◽  
Walter A. Robinson ◽  
Gary M. Lackmann

Abstract Mesoscale condensational heating can increase the sensitivity of modeled extratropical cyclogenesis to horizontal resolution. Here a pseudo global warming experiment is presented to investigate how this heating-enhanced sensitivity to resolution changes in a warmer and thus moister atmosphere. The Weather Research and Forecasting (WRF) Model with 120- and 20-km grid spacing is used to simulate current and future climates. It is found that the North Atlantic storm-track response to global warming is amplified at the higher model resolution. The most dramatic changes occur over the northeastern Atlantic, where resolution typical of current general circulation models (GCMs) results in a smaller global warming response in comparison with that in the 20-km simulations. These results suggest that caution is warranted when interpreting projections from coarse-resolution GCMs of future cyclone activity over the northeastern Atlantic.

2021 ◽  
Author(s):  
Luca Famooss Paolini ◽  
Alessio Bellucci ◽  
Paolo Ruggieri ◽  
Panos Athanasiadis ◽  
Silvio Gualdi

<p>Western boundary currents transport a large amount of heat from the Tropics toward higher latitudes; furthermore they are characterized by a strong sea surface temperature (SST) gradient, which anchors zones of intense upward motion extending up to the upper-troposphere and shapes zones of intense baroclinic eddy activity (storm tracks). For such reasons they have been shown to be fundamental in influencing the climate of the Northern Hemisphere and its variability, and a potentially relevant source of atmospheric predictability. </p><p> </p><p>General circulation models show deficiencies in simulating the observed atmospheric response to SST front variability. The atmospheric horizontal resolution has been recently proposed as a key element in understanding such differences. However, the number of studies on this subject is still limited. Furthermore, a multi-model analysis to systematically investigate differences between low-resolution and high-resolution atmospheric response to oceanic forcing is still lacking. </p><p> </p><p>The present work has the objective to fill this gap, analysing the atmospheric response to Gulf Stream SST front shifting using data from recent High Resolution Model Intercomparison Project (HighResMIP). This project was designed with the specific objective of investigating the impact of increased model horizontal resolution on the representation of the observed climate. Ensembles of historical simulations performed with three atmospheric general circulation models (AGCMs) have been analysed, each conducted with a low-resolution (LR, about 1°) and a high-resolution (HR, about 0.25°) configuration. AGCMs have been forced with observed SSTs (HadISST2 dataset), available at daily frequency on a 0.25° grid, during 1950–2014. </p><p><br>Results show atmospheric responses to the SST-induced diabatic heating anomalies that are strongly resolution dependent. In LR simulations a low-pressure anomaly is present downstream of the SST anomaly, while the diabatic heating anomaly is mainly balanced by meridional advection of air coming from higher latitudes, as expected for an extra-tropical shallow heat source. In contrast, HR simulations generate a high-pressure anomaly downstream of the SST anomaly, thus driving positive temperature advection from lower latitudes (not balancing diabatic heating). Along the vertical direction, both in LR and HR simulation, the diabatic heating in the interior of the atmosphere is balanced by upward motion south of GS SST front and downward motion north and further south of the Gulf Stream. Finally, LR simulations show a reduction in storm-track activity over the North Atlantic, whereas HR simulations show a meridional displacement of the storm-track considerably larger (yet in the same direction) than that of the SST front. HR simulations reproduce the atmospheric response obtained from observations, albeit weaker. This is a hint for the existence of a positive feedback between ocean and atmosphere, as proposed in previous studies. These findings are qualitatively consistent with previous results in literature and, leveraging on recent coordinated modelling efforts, shed light on the effective role of atmospheric horizontal resolution in modelling the atmospheric response to extra-tropical oceanic forcing.</p>


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2013 ◽  
Vol 70 (7) ◽  
pp. 2234-2250 ◽  
Author(s):  
Jeff Willison ◽  
Walter A. Robinson ◽  
Gary M. Lackmann

Abstract Theoretical, observational, and modeling studies have established an important role for latent heating in midlatitude cyclone development. Models simulate some contribution from condensational heating to cyclogenesis, even with relatively coarse grid spacing (on the order of 100 km). Our goal is to more accurately assess the diabatic contribution to storm-track dynamics and cyclogenesis while bridging the gap between climate modeling and synoptic dynamics. This study uses Weather Research and Forecasting model (WRF) simulations with 120- and 20-km grid spacing to demonstrate the importance of resolving additional mesoscale features that are associated with intense precipitation and latent heat release within extratropical cyclones. Sensitivity to resolution is demonstrated first with a case study, followed by analyses of 10 simulated winters over the North Atlantic storm track. Potential vorticity diagnostics are employed to isolate the influences of latent heating on storm dynamics, and terms in the Lorenz energy cycle are analyzed to determine the resulting influences on the storm track. The authors find that the intensities of individual storms and their aggregate behavior in the storm track are strongly sensitive to horizontal resolution. An enhanced positive feedback between cyclone intensification and latent heat release is seen at higher resolution, resulting in a systematic increase in eddy intensity and a stronger storm track relative to the coarser simulations. These results have implications for general circulation models and their projections of climate change.


2005 ◽  
Vol 18 (19) ◽  
pp. 3968-3982 ◽  
Author(s):  
C. C. Raible ◽  
T. F. Stocker ◽  
M. Yoshimori ◽  
M. Renold ◽  
U. Beyerle ◽  
...  

Abstract The decadal trend behavior of the Northern Hemisphere atmospheric circulation is investigated utilizing long-term simulations with different state-of-the-art coupled general circulation models (GCMs) for present-day climate conditions (1990), reconstructions of the past 500 yr, and observations. The multimodel simulations show that strong positive winter North Atlantic Oscillation (NAO) trends are connected with the underlying sea surface temperature (SST) and exhibit an SST tripole trend pattern and a northward shift of the storm-track tail. Strong negative winter trends of the Aleutian low are associated with SST changes in the El Niño–Southern Oscillation (ENSO) region and a westward shift of the storm track in the North Pacific. The observed simultaneous appearance of strong positive NAO and negative Aleutian low trends is very unlikely to occur by chance in the unforced simulations and reconstructions. The positive winter NAO trend of the last 50 yr is not statistically different from the level of internal atmosphere–ocean variability. The unforced simulations also show a strong link between positive SST trends in the ENSO region and negative Aleutian low trends. With much larger observed SST trends in the ENSO region, this suggests that the observed negative Aleutian low trend is possibly influenced by external forcing, for example, global warming, volcanism, and/or solar activity change.


2004 ◽  
Vol 17 (24) ◽  
pp. 4630-4635 ◽  
Author(s):  
Laurent Terray ◽  
Marie-Estelle Demory ◽  
Michel Déqué ◽  
Gaelle de Coetlogon ◽  
Eric Maisonnave

Abstract Evidence is presented, based on an ensemble of climate change scenarios performed with a global general circulation model of the atmosphere with high horizontal resolution over Europe, to suggest that the end-of-century anthropogenic climate change over the North Atlantic–European region strongly projects onto the positive phase of the North Atlantic Oscillation during wintertime. It is reflected in a doubling of the residence frequency of the climate system in the associated circulation regime, in agreement with the nonlinear climate perspective. The strong increase in the amplitude of the response, compared to coarse-resolution coupled model studies, suggests that improved model representation of regional climate is needed to achieve more reliable projections of anthropogenic climate change on European climate.


2021 ◽  
Author(s):  
Johanna Knauf ◽  
Joakim Kjellsson ◽  
Annika Reintges

<p>We study the impact of ocean horizontal resolution on storm tracks over the North Atlantic Ocean using the FOCI-OpenIFS climate model and the TRACK storm-tracking algorithm. We find that increasing ocean resolution from 1/2° to 1/10° reduces a cold bias over the North Atlantic which leads to a northward shift of the storm tracks, in particular in winter and spring seasons.<span> </span></p><p>Most climate models with non-eddying oceans, i.e. horizontal resolutions of 100 km or higher, suffer from a cold SST bias in the North Atlantic. Refining the horizontal resolution from 1/2° to 1/10° allows for a distinct Gulf Stream extension and better representation of the major current systems which reduces this cold bias. The associated warming of the ocean surface with increasing resolution also warms the troposphere and leads to a northward shift in the tropospheric eddy-driven jet. Overall, the increased ocean resolution thus improves the ocean circulation as well as the atmospheric circulation.<span> </span></p><p>We use two metrics to evaluate the storm track activity in the simulations. We calculate 2-8 day bandpass-filtered mean sea-level pressure (MSLP) and eddy heat flux (v’T’) which is an Eulerian metric that shows variability of low- and high-pressure systems as well as their associated heat flux, but says nothing about the genesis, lysis or life time of individual storms. We also use the TRACK storm-tracking algorithm with 12-hourly MSLP data to produce trajectories of individual storms, which allows us to study individual storms.<span> </span></p><p>The Eulerian approach using MSLP variance and eddy heat fluxes clearly shows a northward shift of the storm tracks as the ocean resolution is increased. Overall, the northward shift leads to reduced biases compared to ERA-Interim reanalysis. Storm-track trajectories show higher storm track and storm genesis densities around 60°N with the higher ocean resolution. Interestingly, a higher ocean resolution also results in longer life time of storms. We speculate that this is due to enhanced air-sea interactions where cyclones are fed more energy from the eddy-resolving ocean than from the non-eddying ocean.</p>


2012 ◽  
Vol 39 (7-8) ◽  
pp. 1559-1576 ◽  
Author(s):  
Anne Sophie Daloz ◽  
Fabrice Chauvin ◽  
Kevin Walsh ◽  
Sally Lavender ◽  
Deborah Abbs ◽  
...  

2020 ◽  
Author(s):  
Peter Nooteboom ◽  
Philippe Delandmeter ◽  
Peter Bijl ◽  
Erik van Sebille ◽  
Henk Dijkstra ◽  
...  

<p>Any type of non-buoyant material in the ocean is transported by currents during its sinking journey. This transport can be far from negligible for typical (plankton) particles with a low sinking velocity. To estimate the lateral transport, the material can be modelled as a set of Lagrangian particles advected by currents that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are often strongly eddying, providing flow fields with a horizontal resolution of  10km on a daily basis. However, many long term climate modelling studies (e.g. in palaeoclimate) rely on low resolution models that cannot capture mesoscale features. The lower model resolution could influence data-model comparisons using Lagrangian techniques, but this is not properly evaluated yet through a direct comparison.</p><p>In this study, we simulate the transport of sinking Lagrangian particles using low (1°; non-eddying)  and high (0.1°; eddying) horizontal resolution OGCMs of the present-day ocean, and evaluate the effect of the two resolutions on particle transport. We find major differences between the transport in the non-eddying versus the eddying OGCM (in terms of the divergence of particle trajectories and their mean trajectory). Addition of stochastic noise to the particle trajectory parameterizes the effect of eddies well in some regions (e.g. in the North Pacific gyre).</p><p>We recommend to apply sinking Lagrangian particles only in velocity fields with eddying OGCMs, which basically excludes all paleo-simulations. We are currently simulating the equilibrium Eocene (38Ma) climate using an eddying OGCM, to be able to apply these Lagrangian techniques in an eddying ocean of the past. We expect this to lead towards a better agreement between the OGCM and sedimentary fossil microplankton.</p>


Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Emily Black

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.


2006 ◽  
Vol 2 (4) ◽  
pp. 633-656
Author(s):  
K. Grosfeld ◽  
G. Lohmann ◽  
N. Rimbu ◽  
K. Fraedrich ◽  
F. Lunkeit

Abstract. We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm) phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960). Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP) reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.


Sign in / Sign up

Export Citation Format

Share Document