Homogenized Variability of Radiosonde-Derived Atmospheric Boundary Layer Height over the Global Land Surface from 1973 to 2014

2016 ◽  
Vol 29 (19) ◽  
pp. 6893-6908 ◽  
Author(s):  
Xiaoyan Wang ◽  
Kaicun Wang

Abstract Boundary layer height (BLH) significantly impacts near-surface air quality, and its determination is important for climate change studies. Integrated Global Radiosonde Archive data from 1973 to 2014 were used to estimate the long-term variability of the BLH based on profiles of potential temperature, relative humidity, and atmospheric refractivity. However, this study found that there was an obvious inhomogeneity in the radiosonde-derived BLH time series because of the presence of discontinuities in the raw radiosonde dataset. The penalized maximal F test and quantile-matching adjustment were used to detect the changepoints and to adjust the raw BLH series. The most significant inhomogeneity of the BLH time series was found over the United States from 1986 to 1992, which was mainly due to progress made in sonde models and processing procedures. The homogenization did not obviously change the magnitude of the daytime convective BLH (CBLH) tendency, but it improved the statistical significance of its linear trend. The trend of nighttime stable BLH (SBLH) is more dependent on the homogenization because the magnitude of SBLH is small, and SBLH is sensitive to the observational biases. The global daytime CBLH increased by about 1.6% decade−1 before and after homogenization from 1973 to 2014, and the nighttime homogenized SBLH decreased by −4.2% decade−1 compared to a decrease of −7.1% decade−1 based on the raw series. Regionally, the daytime CBLH increased by 2.8%, 0.9%, 1.6%, and 2.7% decade−1 and the nighttime SBLH decreased significantly by −2.7%, −6.9%, −7.7%, and −3.5% decade−1 over Europe, the United States, Japan, and Australia, respectively.

2006 ◽  
Vol 7 (5) ◽  
pp. 1043-1060 ◽  
Author(s):  
Ismail Yucel

Abstract This study implements a new land-cover classification and surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and investigates its effects on regional near-surface atmospheric state variables as well as the planetary boundary layer evolution for two dissimilar U.S. regions. Surface parameter datasets are determined by translating the 17-category MODIS classes into the U.S. Geological Survey (USGS) and Simple Biosphere (SiB) categories available for use in MM5. Changes in land-cover specification or associated parameters affected surface wind, temperature, and humidity fields, which, in turn, resulted in perceivable alterations in the evolving structure of the planetary boundary layer. Inclusion of the MODIS albedo into the simulations enhanced these impacts further. Area-averaged comparisons with ground measurements showed remarkable improvements in near-surface temperature and humidity at both study areas when MM5 is initialized with MODIS land-cover and albedo data. Influence of both MODIS surface datasets is more significant at a semiarid location in the southwest of the United States than it is in a humid location in the mid-Atlantic region. Intense summertime surface heating at the semiarid location creates favorable conditions for strong land surface forcing. For example, when the simulations include MODIS land cover and MODIS albedo, respective error reduction rates were 6% and 11% in temperature and 2% and 2.5% in humidity in the southwest of the United States. Error reduction rates in near-surface atmospheric fields are considered important in the design of mesoscale weather simulations.


2021 ◽  
Author(s):  
Jianping Guo ◽  
Jian Zhang ◽  
Kun Yang ◽  
Hong Liao ◽  
Shaodong Zhang ◽  
...  

Abstract. The planetary boundary layer height (BLH) governs the vertical transport of mass, momentum and moisture between the surface and the free atmosphere, and thus its characterization is recognized as crucial for air quality, weather and climate. Although reanalysis products can provide important insight into the global view of BLH in a seamless way, the in situ observed BLH on a global scale remains poorly understood due to the lack of high-resolution (1-s or 2-s) radiosonde measurements. The present study attempts to establish a near-global BLH climatology at synoptic times (0000 and 1200 UTC) and in the daytime using high-resolution radiosonde measurements over 300 radiosonde sites worldwide for the period 2012 to 2019, which is then compared against the BLHs obtained from four reanalysis datasets, including ERA-5, MERRA-2, JRA-55, and NCEP-2. The variations of BLH exhibit large spatial and temporal dependence, and as a result the BLH maxima are generally discerned over the regions such as Western United States and Western China, in which the balloon launch times mostly correspond to the afternoon. The diurnal variations of BLH are revealed with a peak at 1700 Local Solar Time (LST). The most promising reanalysis product is ERA-5, which underestimates BLH by around 130 m as compared to radiosondes. In addition, MERRA-2 is a well-established product and has an underestimation of around 160 m. JRA-55 and NCEP-2 might produce considerable additional uncertainties, with a much larger underestimation of up to 400 m. The largest bias in the reanalysis data appears over the Western United States and Western China and it might be attributed to the maximal BLH in the afternoon when the boundary layer has grown up. Statistical analyses further indicate that the biases of reanalysis BLH products are positively associated with orographic complexity, as well as the occurrence of static instability. To our best knowledge, this study presents the first near-global view of high-resolution radiosonde derived BLH and provides a quantitative assessment of the four frequently used reanalysis products.


2019 ◽  
Vol 20 (8) ◽  
pp. 1511-1531 ◽  
Author(s):  
Jessica M. Erlingis ◽  
Jonathan J. Gourley ◽  
Jeffrey B. Basara

Abstract Backward trajectories were derived from North American Regional Reanalysis data for 19 253 flash flood reports published by the National Weather Service to determine the along-path contribution of the land surface to the moisture budget for flash flood events in the conterminous United States. The impact of land surface interactions was evaluated seasonally and for six regions: the West Coast, Arizona, the Front Range, Flash Flood Alley, the Missouri Valley, and the Appalachians. Parcels were released from locations that were impacted by flash floods and traced backward in time for 120 h. The boundary layer height was used to determine whether moisture increases occurred within the boundary layer or above it. Moisture increases occurring within the boundary layer were attributed to evapotranspiration from the land surface, and surface properties were recorded from an offline run of the Noah land surface model. In general, moisture increases attributed to the land surface were associated with anomalously high surface latent heat fluxes and anomalously low sensible heat fluxes (resulting in a positive anomaly of evaporative fraction) as well as positive anomalies in top-layer soil moisture. Over the ocean, uptakes were associated with positive anomalies in sea surface temperatures, the magnitude of which varies both regionally and seasonally. Major oceanic surface-based source regions of moisture for flash floods in the United States include the Gulf of Mexico and the Gulf of California, while boundary layer moisture increases in the southern plains are attributable in part to interactions between the land surface and the atmosphere.


2016 ◽  
Author(s):  
Jianping Guo ◽  
Yucong Miao ◽  
Yong Zhang ◽  
Huan Liu ◽  
Zhanqing Li ◽  
...  

Abstract. The important roles of planetary boundary layer (PBL) in climate, weather and air quality have long been recognized, but little has been known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and a reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH) is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLH derived from observations and reanalysis shows good agreement. The BLH derived from three- or four-times-daily soundings in summer tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western sub-regions of China than other sub-regions. The meteorological influence on the annual cycle of BLH are investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps understand the roles of PBL playing in the air pollution, weather and climate of China.


2018 ◽  
Vol 18 (21) ◽  
pp. 15921-15935 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has been a great concern and thus the focus of intensive studies. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration across China, is not yet well understood. We investigate this issue at ∼1600 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH–PM relationship. Albeit the PBLH–PM correlations are roughly negative for most cases, their magnitude, significance, and even sign vary considerably with location, season, and meteorological conditions. Weak or even uncorrelated PBLH–PM relationships are found over clean regions (e.g., Pearl River Delta), whereas nonlinearly negative responses of PM to PBLH evolution are found over polluted regions (e.g., North China Plain). Relatively strong PBLH–PM interactions are found when the PBLH is shallow and PM concentration is high, which typically corresponds to wintertime cases. Correlations are much weaker over the highlands than the plains regions, which may be associated with lighter pollution loading at higher elevations and contributions from mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind air plays a dominant role in removing pollutants, and leads to obscure PBLH–PM relationships. A ventilation rate is used to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. As such, this study contributes to improved understanding of aerosol–planetary boundary layer (PBL) interactions and thus our ability to forecast surface air pollution.


2021 ◽  
Vol 14 (11) ◽  
pp. 7341-7353
Author(s):  
Anna Franck ◽  
Dmitri Moisseev ◽  
Ville Vakkari ◽  
Matti Leskinen ◽  
Janne Lampilahti ◽  
...  

Abstract. Knowledge of the atmospheric boundary layer state and evolution is important for understanding air pollution and low-level cloud development, among other things. There are a number of instruments and methods that are currently used to estimate boundary layer height (BLH). However, no single instrument is capable of providing BLH measurements in all weather conditions. We proposed a method to derive a daytime convective BLH using clear air echoes in radar observations and investigated the consistency of these retrievals between different radar frequencies. We utilized data from three vertically pointing radars that are available at the SMEAR II station in Finland, i.e. the C band (5 GHz), Ka band (35 GHz) and W band (94 GHz). The Ka- or W-band cloud radars are an integral part of cloud profiling stations of pan-European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Our method will be utilized at ACTRIS stations to serve as an additional estimate of the BLH during summer months. During this period, insects and Bragg scatter are often responsible for clear air echoes recorded by weather and cloud radars. To retrieve a BLH, we suggested a mechanism to separate passive and independently flying insects that works for all analysed frequency bands. At the lower frequency (the C band) insect scattering has been separated from Bragg scattering using a combination of the radar reflectivity factor and linear depolarization ratio. Retrieved values of the BLH from all radars are in a good agreement when compared to the BLH obtained with the co-located HALO Doppler lidar and ERA5 reanalysis data set. Our method showed some underestimation of the BLH after nighttime heavy precipitation yet demonstrated a potential to serve as a reliable method to obtain a BLH during clear-sky days. Additionally, the entrainment zone was observed by the C-band radar above the CBL in the form of a Bragg scatter layer. Aircraft observations of vertical profiles of potential temperature and water vapour concentration, collected in the vicinity of the radar, demonstrated some agreement with the Bragg scatter layer.


2018 ◽  
Author(s):  
Sara Sadri ◽  
Eric F. Wood ◽  
Ming Pan

Abstract. Since April 2015, NASA's Soil Moisture Active Passive (SMAP) mission has monitored near-surface soil moisture, mapping the globe between the latitude bands of 85.044° N/S in 2–3 days depending on location. SMAP Level 3 passive radiometer product (SPL3SMP) measures the amount of water in the top 5 cm of soil except for regions of heavy vegetation (vegetation water content >4.5 kg/m2) and frozen or snow covered locations. SPL3SMP retrievals are spatially and temporally discontinuous, so the 33 months offers a short SMAP record length and poses a statistical challenge for meaningful assessment of its indices. The SMAP SPL4SMAU data product provides global surface and root zone soil moisture at 9-km resolution based on assimilating the SPL3SMP product into the NASA Catchment land surface model. Of particular interest to SMAP-based agricultural applications is a monitoring product that assesses the SMAP near-surface soil moisture in terms of probability percentiles for dry and wet conditions. We describe here SMAP-based indices over the continental United States (CONUS) based on both near-surface and root zone soil moisture percentiles. The percentiles are based on fitting a Beta distribution to the retrieved moisture values. To assess the data adequacy, a statistical comparison is made between fitting the distribution to VIC soil moisture values for the days when SPL3SMP are available, versus fitting to a 1979–2017 VIC data record. For the cold season (November–April), 57 % of grids were deemed to be consistent between the periods, and 68 % in the warm season (May–October), based on a Kolmogorov–Smirnov statistical test. It is assumed that if grids passed the consistency test using VIC data, then the grid had sufficient SMAP data. Our near-surface and root zone drought index on maps are shown to be similar to those produced by the U.S. Drought Monitor (from D0-D4) and GRACE. In a similar manner, we extend the index to include pluvial conditions using indices W0-W4. This study is a step forward towards building a national and international soil moisture monitoring system, without which, quantitative measures of drought and pluvial conditions will remain difficult to judge.


2020 ◽  
Author(s):  
Katrin Frieda Gehrke ◽  
Matthias Sühring ◽  
Björn Maronga

Abstract. In this paper the land-surface model embedded in the PALM model system is described and evaluated against in-situ measurement data in Cabauw. For this, two consecutive clear-sky days are simulated and the components of surface energy balance, as well as near-surface potential temperature, humidity and horizontal wind speed are compared against observation data. For the simulated period, components of the energy balance agree well during day- and nighttime, and also the daytime Bowen ratio agrees fairly well compared to the observations. Although the model simulates a significantly more stably-stratified nocturnal boundary layer compared to the observation, near-surface potential temperature and humidity agree fairly well during day. Moreover, we performed a sensitivity study in order to investigate how much the model results depend on land-surface and soil specifications, as well as atmospheric initial conditions. By this, we find that a false estimation of the leaf area index, the albedo, or the initial humidity causes a serious misrepresentation of the daytime turbulent sensible and latent heat fluxes. During night, the boundary-layer characteristics are mostly affected by grid size, surface roughness, and the applied radiation schemes.


2021 ◽  
Author(s):  
Anna Franck ◽  
Dmitri Moisseev ◽  
Ville Vakkari ◽  
Matti Leskinen ◽  
Janne Lampilahti ◽  
...  

Abstract. Knowledge of atmospheric boundary layer state and evolution is important for understanding air pollution and low level cloud development, among other things. There are a number of instruments and methods that are currently used to estimate boundary layer height (BLH). However, no single instrument is capable of providing BLH measurements in all weather conditions. We proposed a method to derive a daytime convective BLH using radar observations and investigated the consistency of these retrievals between different radars. We utilized data from three vertically-pointing radars that are available at the measurement station in Southern Finland: the C-band (5 GHz), Ka-band (35 GHz) and W-band (94 GHz). The Ka- or W- band cloud radars are an integral part of cloud profiling stations of pan-European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Our method will be utilized at ACTRIS stations to serve as an additional estimate of the BLH during summer months. During this period, echoes from insects and Bragg scatter are often recorded by radars. To retrieve a BLH, we suggested a mechanism to separate small insects that follow air motion and independently flying insects that works for all analyzed frequency bands. At the lower frequency (the C-band) insect scattering was separated from Bragg scattering using a combination of radar reflectivity factor and linear depolarization ratio. Retrieved values of the BLH from all radars are in a good agreement when compared to the BLH obtained with the co-located lidar and reanalysis dataset. Our method showed some underestimation of the BLH after night-time heavy precipitation yet demonstrated a potential to serve as a reliable method to obtain a BLH during clear-sky days. Additionally, the entrainment zone was observed by the C-band radar above the CBL in a form of a Bragg scatter layer. Aircraft observations of vertical profiles of potential temperature and water vapor mixing ratio, collected in the vicinity of the radar, demonstrated some agreement with the Bragg scatter layer.


2020 ◽  
Author(s):  
Cem Berk Senel ◽  
Orkun Temel ◽  
Sara Porchetta ◽  
Hakan Sert ◽  
Ozgur Karatekin ◽  
...  

<p>The Martian planetary boundary layer (PBL) is an important component of the Martian climate. It is the lowest portion of the atmosphere where the strong buoyant and shear forces influence the interaction between surface and atmosphere <strong>[1]</strong>. The Martian PBL exhibits extreme events compared to the Earth's PBL, such as global dust storms, local dust devils, turbulent gusts and strong updraughts. Due to the thinner atmosphere of Mars and lower surface thermal inertia, the Martian planetary boundary layer shows stronger diurnal variations compared to its terrestrial counterpart. Moreover, as a result of the thinner atmosphere, radiative heat forcing is stronger, such that the Martian planetary boundary layer height can reach up to 10 km. Radiative forcing on Mars is affected by the atmospheric cycles, i.e. CO<sub>2</sub>, water and dust cycles. In this study, we perform GCM simulations, using dust climatologies corresponding to the last 10 Mars years and present the inter-annual and seasonal variations in the planetary boundary layer height, mixed-layer potential temperature, convective velocity scale, friction velocity and Richardson number. To perform these GCM simulations, the Mars version of planetWRF (MarsWRF) model <strong>[2]</strong> is utilized, that solves the fully-compressible, non-hydrostatic Euler equations in a finite difference framework.</p><p><strong>[1]</strong> Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B., & Tyler, G. L. (2008). The depth of the convective boundary layer on Mars. Icarus, 198(1), 57-66.</p><p><strong>[2]</strong> Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research: Planets, 112(E9).</p>


Sign in / Sign up

Export Citation Format

Share Document