scholarly journals Impact of Synoptic Atmospheric Forcing on the Mean Ocean Circulation

2016 ◽  
Vol 29 (16) ◽  
pp. 5709-5724 ◽  
Author(s):  
Yang Wu ◽  
Xiaoming Zhai ◽  
Zhaomin Wang

Abstract The impact of synoptic atmospheric forcing on the mean ocean circulation is investigated by comparing simulations of a global eddy-permitting ocean–sea ice model forced with and without synoptic atmospheric phenomena. Consistent with previous studies, transient atmospheric motions such as weather systems are found to contribute significantly to the time-mean wind stress and surface heat loss at mid- and high latitudes owing to the nonlinear nature of air–sea turbulent fluxes. Including synoptic atmospheric forcing in the model has led to a number of significant changes. For example, wind power input to the ocean increases by about 50%, which subsequently leads to a similar percentage increase in global eddy kinetic energy. The wind-driven subtropical gyre circulations are strengthened by about 10%–15%, whereas even greater increases in gyre strength are found in the subpolar oceans. Deep convection in the northern North Atlantic becomes significantly more vigorous, which in turn leads to an increase in the Atlantic meridional overturning circulation (AMOC) by as much as 55%. As a result of the strengthened horizontal gyre circulations and the AMOC, the maximum global northward heat transport increases by almost 50%. Results from this study show that synoptic atmospheric phenomena such as weather systems play a vital role in driving the global ocean circulation and heat transport, and therefore should be properly accounted for in paleo- and future climate studies.

2015 ◽  
Vol 28 (23) ◽  
pp. 9221-9234 ◽  
Author(s):  
J. A. M. Green ◽  
A. Schmittner

Abstract An intermediate-complexity climate model is used to simulate the impact of an accelerated Pine Island Glacier mass loss on the large-scale ocean circulation and climate. Simulations are performed for preindustrial conditions using hosing levels consistent with present-day observations of 3000 m3 s−1, at an accelerated rate of 6000 m3 s−1, and at a total collapse rate of 100 000 m3 s−1, and in all experiments the hosing lasted 100 years. It is shown that even a modest input of meltwater from the glacier can introduce an initial cooling over the upper part of the Southern Ocean due to increased stratification and ice cover, leading to a reduced upward heat flux from Circumpolar Deep Water. This causes global ocean heat content to increase and global surface air temperatures to decrease. The Atlantic meridional overturning circulation (AMOC) increases, presumably owing to changes in the density difference between Antarctic Intermediate Water and North Atlantic Deep Water. Simulations with a simultaneous hosing and increases of atmospheric CO2 concentrations show smaller effects of the hosing on global surface air temperature and ocean heat content, which the authors attribute to the melting of Southern Ocean sea ice. The sensitivity of the AMOC to the hosing is also reduced as the warming by the atmosphere completely dominates the perturbations.


2020 ◽  
Vol 33 (13) ◽  
pp. 5393-5411
Author(s):  
Jonathan W. Rheinlænder ◽  
David Ferreira ◽  
Kerim H. Nisancioglu

AbstractChanges in the geometry of ocean basins have been influential in driving climate change throughout Earth’s history. Here, we focus on the emergence of the Greenland–Scotland Ridge (GSR) and its influence on the ocean state, including large-scale circulation, heat transport, water mass properties, and global climate. Using a coupled atmosphere–ocean–sea ice model, we consider the impact of introducing the GSR in an idealized Earth-like geometry, comprising a narrow Atlantic-like basin and a wide Pacific-like basin. Without the GSR, deep-water formation occurs near the North Pole in the Atlantic basin, associated with a deep meridional overturning circulation (MOC). By introducing the GSR, the volume transport across the sill decreases by 64% and deep convection shifts south of the GSR, dramatically altering the structure of the high-latitude MOC. Due to compensation by the subpolar gyre, the northward ocean heat transport across the GSR only decreases by ~30%. As in the modern Atlantic Ocean, a bidirectional circulation regime is established with warm Atlantic water inflow and a cold dense overflow across the GSR. In sharp contrast to the large changes north of the GSR, the strength of the Atlantic MOC south of the GSR is unaffected. Outside the high latitudes of the Atlantic basin, the surface climate response is surprisingly small, suggesting that the GSR has little impact on global climate. Our results suggest that caution is required when interpreting paleoproxy and ocean records, which may record large local changes, as indicators of basin-scale changes in the overturning circulation and global climate.


2006 ◽  
Vol 36 (12) ◽  
pp. 2232-2252 ◽  
Author(s):  
Robert Hallberg ◽  
Anand Gnanadesikan

Abstract The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-to-intermediate water cell extends farther southward by hundreds of kilometers and the deep-to-intermediate cell draws on comparatively lighter deep waters. The overturning response to changes in the winds is also sensitive to the presence of eddies. In noneddying simulations, changing the Ekman transport produces comparable changes in the overturning, much of it involving transformation of deep waters and resembling the mean circulation. In the eddy-permitting simulations, a significant fraction of the Ekman transport changes are compensated by eddy-induced transport drawing from lighter waters than does the mean overturning. This significant difference calls into question the ability of coarse-resolution ocean models to accurately capture the impact of changes in the Southern Ocean on the global ocean circulation.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2021 ◽  
Author(s):  
Claus W. Böning ◽  
Arne Biastoch ◽  
Klaus Getzlaff ◽  
Patrick Wagner ◽  
Siren Rühs ◽  
...  

<p>A series of global ocean - sea ice model simulations is used to investigate the spatial structure and temporal variability of the sinking branch of the meridional overturning circulation (AMOC) in the subpolar North Atlantic. The experiments include hindcast simulations of the last six decades based on the high-resolution (1/20°) VIKING20X-model forced by the CORE and JRA55-do reanalysis products, supplemented by sensitivity studies with a 1/4°-configuration (ORCA025) aimed at elucidating the roles of variations in the wind stress and buoyancy fluxes. The experiments exhibit different multi-decadal trends in the AMOC, reflecting the well-known sensitivity of ocean-only models to subtle details in the configuration of the subarctic freshwater forcing. All experiments, however, concur in that the dense, southward branch of the overturning is mainly fed by “sinking” (in density space) in the Irminger and Iceland Basins, in accordance with the first results of the OSNAP observational program. Remarkably, the contribution of the Labrador Sea has remained small throughout the whole simulation period, even during the phase of extremely strong convection in the early 1990s: i.e., the rate of deep water exported from the subpolar North Atlantic by the DWBC off Newfoundland never differed by more than O(1 Sv) from the DWBC entering the Labrador Sea at Cape Farewell. The model solutions indicate a particular concentration of the sinking along the deep boundary currents south of the Denmark Straits and south of Iceland, pointing to a prime importance for the AMOC of the outflows from the Nordic Seas and their subsequent enhancement by the entrainment of intermediate waters. Since these include the water masses formed by deep convection in the Labrador and southern Irminger Seas, our study offers an alternative interpretation of the dynamical role of decadal changes in Labrador Sea convection intensity in terms of a remote effect on the deep transports established in the outflow regimes.</p>


2021 ◽  
Author(s):  
Chris Barrell ◽  
Ian Renfrew ◽  
Steven Abel ◽  
Andrew Elvidge ◽  
John King

<div> <p>During a cold-air outbreak (CAO) a cold polar airmass flows from the frozen land or ice surface, over the marginal ice zone (MIZ), then out over the comparatively warm open ocean. This constitutes a dramatic change in surface temperature, roughness and moisture availability, typically causing rapid change in the atmospheric boundary layer. Consequently, CAOs are associated with a range of severe mesoscale weather phenomena and accurate forecasting is crucial. Over the Nordic Seas CAOs also play a vital role in global ocean circulation, causing densification and sinking of ocean waters that form the headwaters of the Atlantic meridional overturning circulation. </p> </div><div> <p>To tackle the lack of observations during wintertime CAOs and improve scientific understanding in this important region, the Iceland Greenland Seas Project (IGP) undertook an extensive field campaign during February and March 2018. Aiming to characterise the atmospheric forcing and the ocean response, particularly in and around the MIZ, the IGP made coordinated ocean-atmosphere measurements, involving a research vessel, a research aircraft, a meteorological buoy, moorings, sea gliders and floats.  </p> </div><div> <p>The work presented here employs these novel observational data to evaluate output from the UK Met Office global operational forecasting system and from a pre-operational coupled ocean-ice-atmosphere system. The Met Office aim to transition to a coupled operational forecast in the coming years, thus verification of model versions in development is essential. Results show that this coupled model’s sea ice is generally more accurate than a persistent field. However, it can also suffer from cold-biased sea surface temperatures around the MIZ, which influences the modelled near-surface meteorology. Both these effects demonstrate the crucial importance of accurate sea ice simulation in coupled model forecasting in the high latitudes. Hence, an ice edge metric is then used to quantify the accuracy of the coupled model MIZ edge at two ocean grid resolutions. </p> </div>


2018 ◽  
Author(s):  
Svein Østerhus ◽  
Rebecca Woodgate ◽  
Héðinn Valdimarsson ◽  
Bill Turrell ◽  
Laura de Steur ◽  
...  

Abstract. The Arctic Mediterranean (AM) is the collective name for the Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Into this region, water enters through the Bering Strait (Pacific inflow) and through the passages across the Greenland-Scotland Ridge (Atlantic inflow) and then modified within the AM. The modified waters leave the AM in several flow branches, which are grouped into two different categories: (1) overflow of dense water through the deep passages across the Greenland-Scotland Ridge, and (2) outflow of light water – here termed surface outflow – on both sides of Greenland. These exchanges transport heat, salt, and other substances into and out of the AM and are important for conditions in the AM. They are also part of the global ocean circulation and climate system. Attempts to quantify the transports by various methods have been made for many years, but only recently, has the observational coverage become sufficiently complete to allow an integrated assessment of the AM-exchanges based solely on observations. In this study, we focus on the transport of water and have collected data on volume transport for as many AM-exchange branches as possible between 1993–2015. The total AM-import (oceanic inflows plus freshwater) is found to be 9.1 ± 0.7 Sv (1 Sv = 106 m3 s−1) and has a seasonal variation of amplitude close to 1 Sv and maximum import in October. Roughly one third of the imported water leaves the AM as surface outflow with the remaining two thirds leaving as overflow. The overflow is mainly produced from modified Atlantic inflow and around 70 % of the total Atlantic inflow is converted into overflow, indicating a strong coupling between these two exchanges. The surface outflow is fed from the Pacific inflow and freshwater, but is still ~ 2/3rds from modified Atlantic water. For the inflow branches and the two main overflow branches (Denmark Strait and Faroe Bank Channel), systematic monitoring of volume transport has been established since the mid-1990s and this allows us to estimate trends for the AM-exchanges as a whole. At the 95 % level, only the inflow of Pacific water through the Bering Strait showed a statistically significant trend, which was positive. Both the total AM-inflow and the combined transport of the two main overflow branches also showed trends consistent with strengthening, but they were not statistically significant. They do suggest, however, that any significant weakening of these flows during the last two decades is unlikely and the overall message is that the AM-exchanges remained remarkably stable in the period from the mid-1990s to the mid-2010s. The overflows are the densest source water for the deep limb of the North Atlantic part of the Meridional Overturning Circulation (AMOC), and this conclusion argues that the reported weakening of the AMOC was not due to overflow weakening or reduced overturning in the AM. Although the combined data set has made it possible to establish a consistent budget for the AM-exchanges, the observational coverage for some of the branches is limited, which introduces considerable uncertainty. This lack of coverage is especially extreme for the surface outflows through the Denmark Strait, the overflow across the Iceland-Faroe Ridge, and the inflow over the Scottish shelf. We recommend that more effort is put into observing these flows as well as maintaining the monitoring systems established for the other exchange branches.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1247-1264 ◽  
Author(s):  
Lena M. Schulze Chretien ◽  
Eleanor Frajka-Williams

Abstract. The Labrador Sea is one of a small number of deep convection sites in the North Atlantic that contribute to the meridional overturning circulation. Buoyancy is lost from surface waters during winter, allowing the formation of dense deep water. During the last few decades, mass loss from the Greenland ice sheet has accelerated, releasing freshwater into the high-latitude North Atlantic. This and the enhanced Arctic freshwater export in recent years have the potential to add buoyancy to surface waters, slowing or suppressing convection in the Labrador Sea. However, the impact of freshwater on convection is dependent on whether or not it can escape the shallow, topographically trapped boundary currents encircling the Labrador Sea. Previous studies have estimated the transport of freshwater into the central Labrador Sea by focusing on the role of eddies. Here, we use a Lagrangian approach by tracking particles in a global, eddy-permitting (1/12∘) ocean model to examine where and when freshwater in the surface 30 m enters the Labrador Sea basin. We find that 60 % of the total freshwater in the top 100 m enters the basin in the top 30 m along the eastern side. The year-to-year variability in freshwater transport from the shelves to the central Labrador Sea, as found by the model trajectories in the top 30 m, is dominated by wind-driven Ekman transport rather than eddies transporting freshwater into the basin along the northeast.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


2013 ◽  
Vol 26 (2) ◽  
pp. 609-621 ◽  
Author(s):  
Maria A. A. Rugenstein ◽  
Michael Winton ◽  
Ronald J. Stouffer ◽  
Stephen M. Griffies ◽  
Robert Hallberg

Abstract Climate models simulate a wide range of climate changes at high northern latitudes in response to increased CO2. They also have substantial disagreement on projected changes of the Atlantic meridional overturning circulation (AMOC). Here, two pairs of closely related climate models are used, with each containing members with large and small AMOC declines to explore the influence of AMOC decline on the high-latitude response to increased CO2. The models with larger AMOC decline have less high-latitude warming and sea ice decline than their small AMOC decline counterpart. By examining differences in the perturbation heat budget of the 40°–90°N region, it is shown that AMOC decline diminishes the warming by weakening poleward ocean heat transport and increasing the ocean heat uptake. The cooling impact of this AMOC-forced surface heat flux perturbation difference is enhanced by shortwave feedback and diminished by longwave feedback and atmospheric heat transport differences. The magnitude of the AMOC decline within model pairs is positively related to the magnitudes of control climate AMOC and Labrador and Nordic Seas convection. Because the 40°–90°N region accounts for up to 40% of the simulated global ocean heat uptake over 100 yr, the process described here influences the global heat uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document