scholarly journals Spatial Contrast of Geographically Induced Rainfall Observed by TRMM PR

2017 ◽  
Vol 30 (11) ◽  
pp. 4165-4184 ◽  
Author(s):  
Masafumi Hirose ◽  
Yukari N. Takayabu ◽  
Atsushi Hamada ◽  
Shoichi Shige ◽  
Munehisa K. Yamamoto

Abstract In this study, the spatial variability in precipitation at a 0.1° scale is investigated using long-term data from the Tropical Rainfall Measuring Mission Precipitation Radar. Marked regional heterogeneities emerged for orographic rainfall on characteristic scales of tens of kilometers, high concentrations of small-scale systems (<10 km) over alpine areas, and sharp declines around mountain summits. In detecting microclimates, an additional concern is suspicious echoes observed around certain geographical areas with relatively low rainfall. A finescale land–river contrast can be extracted in the diurnal behavior of rainfall in medium-scale systems (10–100 km), corresponding to the course of the Amazon River. In addition, rainfall enhancement over small islands (0.1°–1°) was identified in terms of the storm scale. Even 0.1°-scale flat islands experience more rainfall than the adjacent ocean, primarily as a result of localized small or moderate systems. By contrast, compared with small islands, high-impact large-scale systems (>100 km) result in more rainfall over the adjacent ocean. Finescale hourly data represented the abrupt asymmetric fluctuation in rainfall across the coastline in the tropics and subtropics (30°S–30°N). Significant diurnal modulations in the rainfall due to large-scale systems are found over tropical offshore regions of vast landmasses but not over small islands or in the midlatitudes between 30° and 36°. Rainfall enhancement over small tropical islands is generated by abundant afternoon rainfall, which results from medium-scale storms that are regulated by the island size and inactivity of rainfall over coastal waters.

2007 ◽  
Vol 135 (6) ◽  
pp. 2226-2241 ◽  
Author(s):  
Yasu-Masa Kodama ◽  
Haruna Okabe ◽  
Yukie Tomisaka ◽  
Katsuya Kotono ◽  
Yoshimi Kondo ◽  
...  

Abstract Tropical Rainfall Measuring Mission observations from multiple sensors including precipitation radar, microwave and infrared radiometers, and a lightning sensor were used to describe precipitation, lightning frequency, and microphysical properties of precipitating clouds over the midlatitude ocean. Precipitation over midlatitude oceans was intense during winter and was often accompanied by frequent lightning. Case studies over the western North Pacific from January and February 2000 showed that some lightning occurred in deep precipitating clouds that developed around cyclones and their attendant fronts. Lightning also occurred in convective clouds that developed in regions of large-scale subsidence behind extratropical cyclones where cold polar air masses were strongly heated and moistened from below by the ocean. The relationships between lightning frequency and the minimum polarization corrected temperature (PCT) at 37 and 85 GHz and the profile of the maximum radar reflectivity resembled relationships derived previously for cases in the Tropics. Smaller lapse rates in the maximum radar reflectivity above the melting level indicate vigorous convection that, although shallow and relatively rare, was as strong as convection over tropical oceans. Lightning was most frequent in systems for which the minimum PCT at 37 GHz was less than 260 K. Lightning and PCT at 85 GHz were not as well correlated as lightning and PCT at 37 GHz. Thus, lightning was frequent in convective clouds that contained many large hydrometeors in the mixed-phase layer, because PCT is more sensitive to large hydrometeors at 37 than at 85 GHz. The relationship between lightning occurrence and cloud-top heights derived from infrared observations was not straightforward. Microphysical conditions that support lightning over the midlatitude ocean in winter were similar to conditions in the Tropics and are consistent with Takahashi’s theory of riming electrification.


Jurnal AKTUAL ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 47
Author(s):  
Aisah Aisah

Rice Milling Company is rice industry’s oldest and largest classified in Indonesia, which is able to absorb more than 10 million workers, handles more than 40 million tons of grain.  Rice Milling Company agro-industy is the central point, because this is where the main product is obtained in the form of rice and raw materials for advanced processing of food and industrial products.  Rice Miling Unit in the district of OKU Timur there is some skala, ranging form small-scale, medium-scale to large-scale.  Fuctional benefits of each different scale milling is also different.  The average rice farmers often sell gabahnya to the rice milling unit closest to the place residence, whether it is large-scale, medium and small.  Rice produced by the milling-grinding different quality.  Usually when a large-scale millimg yield of rice is cleaner than the other scale.  But it does not become a reference for milling grain milling usually depends on consumer demand.  The purpose of the study are : 1.  To determine levels of volume (tonnage) and the retention time of each service fuctional rice storage (barns) wich carried a different scale rice milling unit.  2.  To determine differences in the bebefits of economic transactions received by farmers and rice millers of different scale of business, especially when seen from the level of the milling costs, the purchase price of rice by rice milling unit, and the quality of milling services and service scale.  The result show that : the fuctional role of each is different milling.  Large-scale milling has three fuctional roles are : Processing, storage and distribution.  Medium-scale miling functional has two roles, namely : processing and distribution.  While small-scale rice milling unit has only two functional roles are : processing and storage.


2019 ◽  
Vol 10 (15) ◽  
pp. 4129-4140 ◽  
Author(s):  
Kyle Mills ◽  
Kevin Ryczko ◽  
Iryna Luchak ◽  
Adam Domurad ◽  
Chris Beeler ◽  
...  

We present a physically-motivated topology of a deep neural network that can efficiently infer extensive parameters (such as energy, entropy, or number of particles) of arbitrarily large systems, doing so with scaling.


2018 ◽  
Vol 39 (3) ◽  
pp. 1211
Author(s):  
Flávio De Moraes ◽  
Marcos Aurélio Lopes ◽  
Francisval De Melo Carvalho ◽  
Afonso Aurélio de Carvalho Peres ◽  
Fábio Raphael Pascoti Bruhn ◽  
...  

This study investigates the cost-effectiveness of 20 demonstration units (DUs) belonging to the "Balde Cheio" program. The units in question are from the state of Rio de Janeiro, Brazil, dating from January to December 2011, and are sorted according to the scale of production (small, medium and large). The data were analyzed using Predictive Analytical software (PASW) 18.0. The scale of production influenced the total cost of milk production, and therefore profitability and cost-effectiveness. The large-scale stratum showed the lowest total unit cost. The positive results in medium and large scales in milk production lead to optimal conditions for long-term production, with the capitalization of cowmen. The items regarding the effective operating cost (EOC) with the biggest influence on the costs of dairy activity in the small scale stratum were food, energy and miscellaneous expenses. In the medium scale, these were food, labor force, and miscellaneous expenses. Finally, in the large scale, they were food, labor force and energy. In the small and large scale, the items regarding the total cost with the biggest influence on the costs of dairy activity were food, labor force, and return on capital, while in the medium scale, they were food, return on capital, and labor force. The average break-even point of 14 of the DUs was higher than the average daily production.


2019 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Jiake Li ◽  
Cong Mu ◽  
Chenning Deng ◽  
Menghua Ma

Abstract The storm water management models were established at three spatial scales (large, medium, and small) based on a sponge city pilot area in China to explore the hydrological and environmental effects of rainfall conditions and development modes. Results showed the following. (1) Total runoff reduction rates increased from 26.7% to 53.9% for the rainfall event of a 2-year recurrence period as the scale increased. For 5-year and above recurrence periods, total runoff reduction rates were 19.5–49.4%. These rates increased from the small to medium scale and slightly decreased from the medium to large scale. (2) The runoff coefficients were 0.87–0.29, which decreased from the small to medium scale and were basically constant from the medium to large scale. (3) The peak flow reduction rates decreased with increased recurrence periods. The rates increased initially and then decreased at the small scale, whereas the opposite trend occurred at the medium scale. (4) The reduction rates of pollutants were negatively correlated with recurrence periods under the three spatial scales. The pollution load reduction rates were 19.5–54.7%, which increased from the small to medium scale and were basically constant from the medium to large scale.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 7-14 ◽  
Author(s):  
G. Ho

Globally we are faced with billions of people without access to safe water and adequate sanitation. These are generally located in developing communities. Even in developed communities the current large scale systems for supplying water, collecting wastewater and treating it are not environmentally sustainable, because it is difficult to close the cycle of water and nutrients. This paper discusses the advantages of small scale water and wastewater systems in overcoming the difficulties in providing water and wastewater systems in developing communities and in achieving sustainability in both developed and developing communities. Particular attention is given to technology and technology choice, even though technology alone does not provide the complete answer. Disadvantages of small scale systems and how they may be overcome are discussed.


1987 ◽  
Vol 9 ◽  
pp. 247-248
Author(s):  
Yu. F. Knizhnikov ◽  
V.I. Kravtsova ◽  
I.A. Labutina

Remote-sensing methods in monitoring the glacierization of Mount EI‛ brus are used to produce base and dynamic maps, and to obtain quantitative information (dynamic indices) about the rate, intensity, and variations of the process. The monitoring system is divided, according to scope and territory covered, into small-scale for total glacierization and the periglacial zone, medium-scale for separate glaciers, and large-scale (detailed) for part of the glaciers or sectors of the adjoining slopes. The approximate relationship of even scales is 1 : 4. Small-scale monitoring remote-sensing systems are important for making maps showing the complex characteristics of the glaciological system. A series of maps was produced including geographical, those of high-altitude zones, slope and exposure angles, geological, glaciomorphological, climatic (temperature, precipitation, and winds), distribution of direct solar radiation, hydrological (source of streams), seats of avalanches, and landslides. All these data serve as a cartographical basis in monitoring the glacierization of Mount EI‛ brus. They are compiled from remotely sensed and Earth-based data. Current monitoring on a small scale includes observations of the conditions which determine the existence of the glacial system - this includes data on winter snowfall and the period of snow cover. These observations were obtained from meteorological and resource satellites, and from scanner data of medium and high resolution. Also important are observations of changes in the outline of glaciers, times of snowfall and character of the distribution of snow, and its redistribution due to avalanches and snowstorms. High-resolution space photographs, small-scale aerial photographs, and aerovisual observations provide the data for these observations. It has been determined that the area of the glaciers of Mount El‛ brus has been reduced by 1 % in the last 25 years, i.e. the rate of its deglacierization dropped sharply as compared to preceding decades. The role of quantitative information gains importance in the medium-scale level of monitoring. Topographical maps of separate glaciers compiled from aerial photographs or data from ground stereo-photogrammetric surveys constitute the base maps at this level. The main method used in monitoring were large-scale surveys from aircraft, perspective surveys from helicopters, and phototheodolite surveys. Multi-date surveys of the glaciers provide data about the changes in their outlines and height, the character of their relief, their moraines, the amount of snow accumulation and ablation in separate years, the surface rates of ice flow and their fluctuations. The techniques by which quantitative information is obtained about changes in the glaciers are derived from processing the data of multi-date surveys. The organization and techniques of phototheodolite surveys have been improved. A theory evolved for determining the surface-ice movement by stereo-photogrammetric means and the technique for it has also improved; algorithms and programs for machine processing of the data of multi-date surveys (ground and from aircraft) have been produced At this level of monitoring, it has been found that the retreat rate of most glaciers has slowed down and several glaciers are now in equilibrium. Several glaciers became active at the beginning of the 1970s and 1980s; this was accompanied by an increase in their height and forward movement. For example, activation of Kyukyurtlyu Glacier has been recorded (higher surface and increasing flow rate) which has caused the glacier to move forward 100 m. Surveys at an interval of 2 years recorded the beginning of the process of retreat of this glacier. Detailed monitoring is used to detect the mechanism of the dynamic processes and to study it on local representative sectors. On a glacier it may take the form of annual surveys of its tongue, which makes it possible to observe the processes of formation of moraines and glacio-fluvial relief. Studies may also be made of the mechanism of the movement of avalanches and landslides, deducing their quantitative characteristics and appraising the results of avalanches and landslides. Multi-date surveys of sectors of the slopes provide information about processes in the periglacial zone. At this level, regularly repeated ground stereo-photogrammetric surveys are the main means of observation. Glaciological remote-sensing monitoring provides a wealth of data for theoretical development in the field of glaciology. It makes it possible to forecast and produce warnings about hazardous processes and phenomena.


2006 ◽  
Vol 87 (11) ◽  
pp. 1555-1572 ◽  
Author(s):  
W.-K. Tao ◽  
E. A. Smith ◽  
R. F. Adler ◽  
Z. S. Haddad ◽  
A. Y. Hou ◽  
...  

Rainfall is a fundamental process within the Earth's hydrological cycle because it represents a principal forcing term in surface water budgets, while its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating well into the middle latitudes. Latent heat production itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the Tropics, as well as modify the energetic efficiencies of midlatitude weather systems. This paper highlights the retrieval of latent heating from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American–Japanese space endeavor. Since then, TRMM measurements have been providing credible four-dimensional accounts of rainfall over the global Tropics and subtropics, information that can be used to estimate the space–time structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies for estimating latent heating based on precipitation-rate profile retrievals obtained from TRMM measurements has been under continuous development since the advent of the mission s research program. These algorithms are briefly described, followed by a discussion of the latent heating products that they generate. The paper then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.


2014 ◽  
Vol 556-562 ◽  
pp. 916-920
Author(s):  
Yu Huan Li ◽  
Deng Qiu Li ◽  
Jie Wu

The spatial variability of single ecological factors of the farmland and the synergies among the ecological factors were studied by using geostatistical analysis and factorial kriging analysis (FKA).The results show that all of the spherical models of the co-variogram can be grouped into four parts: the nugget part, the small-scale part, the medium-scale part, and the large-scale part. The mean value of the small-scale range (1.12-1.85 km) is approximately 1.50 km, that of the medium-scale range (3.40-4.10 km) is approximately 3.8 km, and that of the large-scale range (9.35-10.10 km) is approximately 9.8 km. The correlations between each factor on the four scales vary, and the correlation between each factor on the medium scale is the strongest. In this paper, the ecological factors of the farmland on the medium scale have relatively consistent variability and sources, indicating that all of the factors on that scale have a high coordination.


Sign in / Sign up

Export Citation Format

Share Document