scholarly journals Contrasting Local and Remote Impacts of Surface Heating on Polar Warming and Amplification

2018 ◽  
Vol 31 (8) ◽  
pp. 3155-3166 ◽  
Author(s):  
Kiwoong Park ◽  
Sarah M. Kang ◽  
Doyeon Kim ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin

Abstract The polar region has been one of the fastest warming places on Earth in response to greenhouse gas (GHG) forcing. Two distinct processes contribute to the observed warming signal: (i) local warming in direct response to the GHG forcing and (ii) the effect of enhanced poleward heat transport from low latitudes. A series of aquaplanet experiments, which excludes the surface albedo feedback, is conducted to quantify the relative contributions of these two physical processes to the polar warming magnitude and degree of amplification relative to the global mean. The globe is divided into zonal bands with equal area in eight experiments. For each of these, an external heating is prescribed beneath the slab ocean layer in the respective forcing bands. The summation of the individual temperature responses to each local heating in these experiments is very similar to the response to a globally uniform heating. This allows the authors to decompose the polar warming and amplification signal into the effects of local and remote heating. Local polar heating that induces surface-trapped warming due to the large tropospheric static stability in this region accounts for about half of the polar surface warming. Cloud radiative effects act to enhance this local contribution. In contrast, remote nonpolar heating induces a robust polar warming pattern that features a midtropospheric peak, regardless of the meridional location of the forcing. Among all remote forcing experiments, the deep tropical forcing case contributes most to the polar-amplified surface warming pattern relative to the global mean, while the high-latitude forcing cases contribute most to enhancing the polar surface warming magnitude.

2012 ◽  
Vol 25 (15) ◽  
pp. 5223-5240 ◽  
Author(s):  
Daniel Hernández-Deckers ◽  
Jin-Song von Storch

Abstract The warming pattern due to higher greenhouse gas concentrations is expected to affect the global atmospheric energetics mainly via changes in the (i) meridional temperature gradient and (ii) mean static stability. Changes in surface meridional temperature gradients have been previously regarded as the determining feature for the energetics response, but recent studies suggest that changes in mean static stability may be more relevant than previously thought. This study aims to determine the relative importance of these two effects by comparing the energetics responses due to different warming patterns using a fully coupled atmosphere–ocean general circulation model. By means of an additional diabatic forcing, experiments with different warming patterns are obtained: one with a 2xCO2-like pattern that validates the method, one with only the tropical upper-tropospheric warming, and one with only the high-latitude surface warming. The study’s findings suggest that the dominant aspect of the warming pattern that alters the global atmospheric energetics is not its associated meridional temperature gradient changes, but the mean static stability changes. The tropical upper warming weakens the energetics by increasing the mean static stability, whereas the surface warming strengthens it by reducing the mean static stability. The combined 2xCO2-like response is dominated by the tropical upper-tropospheric warming effect, hence the weaker energetic activity. Eddy kinetic energy changes consistently, but the two opposite responses nearly cancel each other in the 2xCO2 case. Therefore, estimates of future changes in storminess may be particularly sensitive to the relative magnitude of the main features of the simulated warming pattern.


2018 ◽  
Vol 31 (12) ◽  
pp. 4933-4947 ◽  
Author(s):  
Doyeon Kim ◽  
Sarah M. Kang ◽  
Yechul Shin ◽  
Nicole Feldl

The mechanism of polar amplification in the absence of surface albedo feedback is investigated using an atmospheric model coupled to an aquaplanet slab ocean forced by a CO2 doubling. In particular, we examine the sensitivity of polar surface warming response under different insolation conditions from equinox (EQN) to annual mean (ANN) to seasonally varying (SEA). Varying insolation greatly affects the climatological static stability. The equinox condition, with the largest polar static stability, exhibits a bottom-heavy vertical profile of polar warming response that leads to the strongest polar amplification. In contrast, the polar warming response in ANN and SEA exhibits a maximum in the midtroposphere, which leads to only weak polar amplification. The midtropospheric warming maximum, which results from an increased poleward atmospheric energy transport in response to the tropics-to-pole energy imbalance, contributes to polar surface warming via downward clear-sky longwave radiation. However, it is cancelled by negative cloud radiative feedbacks locally. Furthermore, the polar lapse rate feedback, calculated from radiative kernels, is negative due to the midtropospheric warming maximum, and hence is not able to promote the polar surface warming. On the other hand, the polar lapse rate feedback in EQN is positive due to the bottom-heavy warming response, contributing to the strong polar surface warming. This contrast suggests that locally induced positive radiative feedbacks are necessary for strong polar amplification. Our results demonstrate how interactions among climate feedbacks determine the strength of polar amplification.


2021 ◽  
pp. 1-46

Abstract This study investigates the formation mechanism of ocean surface warming pattern in response to a doubling CO2 with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that the transient patterns of surface warming and rainfall change simulated by the dynamic ocean-atmosphere coupled model (DOM) can be reproduced by the equilibrium solutions of the slab ocean-atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnet distribution. The SOM is then used as a diagnostic, inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet (ocean heat uptake)-induced cooling effect. As ΔQnet is largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2 warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2 warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQnet effect under transient climate change. Our study highlights the importance of air-sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern.


2021 ◽  
Author(s):  
Sebastian Steinig ◽  
Jiang Zhu ◽  
Ran Feng ◽  

<p>The early Eocene greenhouse represents the warmest interval of the Cenozoic and therefore provides a unique opportunity to understand how the climate system operates under elevated atmospheric CO<sub>2</sub> levels similar to those projected for the end of the 21st century. Early Eocene geological records indicate a large increase in global mean surface temperatures compared to present day (by ~14°C) and a greatly reduced meridional temperature gradient (by ~30% in SST). However, reproducing these large-scale climate features at reasonable CO<sub>2</sub> levels still poses a challenge for current climate models. Recent modelling studies indicate an important role for shortwave (SW) cloud feedbacks to drive increases in climate sensitivity with global warming, which helps to close the gap between simulated and reconstructed Eocene global warmth and temperature gradient. Nevertheless, the presence of such state-dependent feedbacks and their relative strengths in other models remain unclear.</p><p>In this study, we perform a systematic investigation of the simulated surface warming and the underlying mechanisms in the recently published DeepMIP ensemble. The DeepMIP early Eocene simulations use identical paleogeographic boundary conditions and include six models with suitable output: CESM1.2_CAM5, GFDL_CM2.1, HadCM3B_M2.1aN, IPSLCM5A2, MIROC4m and NorESM1_F. We advance previous energy balance analysis by applying the approximate partial radiative perturbation (APRP) technique to quantify the individual contributions of surface albedo, cloud and non-cloud atmospheric changes to the simulated Eocene top-of-the-atmosphere SW flux anomalies. We further compare the strength of these planetary albedo feedbacks to changes in the longwave atmospheric emissivity and meridional heat transport in the warm Eocene climate. Particular focus lies in the sensitivity of the feedback strengths to increasing global mean temperatures in experiments at a range of atmospheric CO<sub>2</sub> concentrations between x1 to x9 preindustrial levels.</p><p>Preliminary results indicate that all models that provide data for at least 3 different CO<sub>2</sub> levels show an increase of the equilibrium climate sensitivity at higher global mean temperatures. This is associated with an increase of the overall strength of the positive SW cloud feedback with warming in those models. This nonlinear behavior seems to be related to both a reduction and optical thinning of low-level clouds, albeit with intermodel differences in the relative importance of the two mechanisms. We further show that our new APRP results can differ significantly from previous estimates based on cloud radiative forcing alone, especially in high-latitude areas with large surface albedo changes. We also find large intermodel variability and state-dependence in meridional heat transport modulated by changes in the atmospheric latent heat transport. Ongoing work focuses on the spatial patterns of the climate feedbacks and the implications for the simulated meridional temperature gradients.</p>


2018 ◽  
Vol 31 (24) ◽  
pp. 9903-9920 ◽  
Author(s):  
Elina Plesca ◽  
Stefan A. Buehler ◽  
Verena Grützun

Atmosphere-only CMIP5 idealized climate experiments with quadrupling of atmospheric CO2 are analyzed to understand the fast response of the tropical overturning circulation to this forcing and the main mechanism of this response. A new metric for the circulation, based on pressure velocity in the subsidence regions, is defined, taking advantage of the dynamical stability of these regions and their reduced sensitivity to the GCM’s cloud and precipitation parameterization schemes. This definition permits us to decompose the circulation change into a sum of relative changes in subsidence area, static stability, and heating rate. A comparative analysis of aqua- and Earth-like planet experiments reveals the effect of the land–sea contrast on the total change in circulation. On average, under the influence of CO2 increase without surface warming, the atmosphere radiatively cools less, and this drives the 3%–4% slowdown of the tropical circulation. Even in an Earth-like planet setup, the circulation weakening is dominated by the radiatively driven changes in the subsidence regions over the oceans. However, the land–sea differential heating contributes to the vertical pattern of the circulation weakening by driving the vertical expansion of the tropics. It is further found that the surface warming would, independently of the CO2 effect, lead to up to a 12% slowdown in circulation, dominated by the enhancement of the static stability in the upper troposphere. The two mechanisms identified above combine in the coupled experiment with abrupt quadrupling, causing a circulation slowdown (focused in the upper troposphere) of up to 18%. Here, the independent effect of CO2 has a considerable impact only at time scales less than one year, being overtaken quickly by the impact of surface warming.


2010 ◽  
Vol 25 (11) ◽  
pp. 2086-2100 ◽  
Author(s):  
Patrick J. McCluskey ◽  
Joost J. Vlassak

The parallel nano-scanning calorimeter (PnSC) is a silicon-based micromachined device for calorimetric measurement of nanoscale materials in a high-throughput methodology. The device contains an array of nanocalorimeters. Each nanocalorimeter consists of a silicon nitride membrane and a tungsten heating element that also serves as a temperature gauge. The small mass of the individual nanocalorimeters enables measurements on samples as small as a few hundred nanograms at heating rates up to 104 K/s. The sensitivity of the device is demonstrated through the analysis of the melting transformation of a 25-nm indium film. To demonstrate the combinatorial capabilities, the device is used to analyze a Ni–Ti–Zr sample library. The as-deposited amorphous samples are crystallized by local heating in a process that lasts just tens of milliseconds. The martensite–austenite transformation in the Ni–Ti–Zr shape memory alloy system is analyzed and the dependence of transformation temperature and specific heat on composition is revealed.


2005 ◽  
Vol 2 ◽  
pp. 253-258 ◽  
Author(s):  
J. Bremer

Abstract. Basing on model calculations by Roble and Dickinson (1989) for an increasing content of atmospheric greenhouse gases in the Earth’s atmosphere Rishbeth (1990) predicted a lowering of the ionospheric F2- and E-regions. Later Rishbeth and Roble (1992) also predicted characteristic longterm changes of the maximum electron density values of the ionospheric E-, F1-, and F2-layers. Long-term observations at more than 100 ionosonde stations have been analyzed to test these model predictions. In the E- and F1-layers the derived experimental results agree reasonably with the model trends (lowering of h'E and increase of ƒoE and ƒoF1, in the E-layer the experimental values are however markedly stronger than the model data). In the ionospheric F2-region the variability of the trends derived at the different individual stations for hmF2 as well as ƒoF2 values is too large to estimate reasonable global mean trends. The reason of the large differences between the individual trends is not quite clear. Strong dynamical effects may play an important role in the F2-region. But also inhomogeneous data series due to technical changes as well as changes in the evaluation algorithms used during the long observation periods may influence the trend analyses.


2016 ◽  
Vol 29 (10) ◽  
pp. 3661-3673 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden

Abstract In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.


2014 ◽  
Vol 875-877 ◽  
pp. 1767-1770
Author(s):  
Jia Lin Lin ◽  
Tao Tao Qian

Previous studies have shown that the solar energy input to the earth system underwent significant decadal variations at individual surface energy budget stations, with a global dimming from 1950s to 1980s, but a global brightening from 1980s to 2000s, and a mixed tendency at different locations thereafter. Here we use a new global gridded solar irradiance dataset to show that the previous results from individual stations represent well the regional means but not the global mean or hemisphere means. The global mean has a decadal variation that is quite different from the individual station results reported in previous studies, which comes from the fact that the southern hemisphere mean has an opposite trend with the northern hemisphere mean. No long-term global dimming trend is found associated with global warming


Sign in / Sign up

Export Citation Format

Share Document