Trends and Variability in Airmass Frequencies: Indicators of a Changing Climate

2020 ◽  
Vol 33 (19) ◽  
pp. 8603-8617
Author(s):  
Cameron C. Lee

AbstractRecent international efforts at communicating climate change have begun using the notion of a climate indicator—a climate-related metric that can be used to track changes in the Earth system over time. Based upon a recently developed global-scale classification of daily air masses, this research examines the trends and variability in the frequencies of these air masses and then utilizes them to develop two nontraditional climate indicators: a warm/cool index (WCI) and a global extremes index (GEI). Results show that both indices trend significantly upward over the 40-yr period of record, indicating an increase in warm-based air masses (WCI) and extreme air masses (GEI). The two indices also exhibit a moderate (GEI) to strong (WCI) association with the global mean temperature record, multiple near-surface climate variables, and other existing climate indicators over that same time, showing promise as global indicators. Shorter-term variability in these indices also show a linear relationship between the WCI and changes in the Atlantic multidecadal oscillation and a nonlinear relationship between GEI and El Niño–Southern Oscillation. While many published climate indicators are based upon a single variable, and/or are regional in scope, the two indices presented herein are unique in that they are representative of the trends in the multivariate (and extreme, in the case of the GEI) weather conditions that are experienced near Earth’s surface, while also being global in scope.

2016 ◽  
Vol 7 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Jiří Mikšovský ◽  
Eva Holtanová ◽  
Petr Pišoft

Abstract. Monthly near-surface temperature anomalies from several gridded data sets (GISTEMP, Berkeley Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and compared with regard to the presence of components attributable to external climate forcings (associated with anthropogenic greenhouse gases, as well as solar and volcanic activity) and to major internal climate variability modes (El Niño/Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and variability characterized by the Trans-Polar Index). Multiple linear regression was used to separate components related to individual explanatory variables in local monthly temperatures as well as in their global means, over the 1901–2010 period. Strong correlations of temperature and anthropogenic forcing were confirmed for most of the globe, whereas only weaker and mostly statistically insignificant connections to solar activity were indicated. Imprints of volcanic forcing were found to be largely insignificant in the local temperatures, in contrast to the clear volcanic signature in their global averages. Attention was also paid to the manifestations of short-term time shifts in the responses to the forcings, and to differences in the spatial fingerprints detected from individual temperature data sets. It is shown that although the resemblance of the response patterns is usually strong, some regional contrasts appear. Noteworthy differences from the other data sets were found especially for the 20th Century Reanalysis, particularly for the components attributable to anthropogenic forcing over land, but also in the response to volcanism and in some of the teleconnection patterns related to the internal climate variability modes.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Caroline Staub ◽  
Clyde W. Fraisse ◽  
Eduardo Gelcer ◽  
Daniel R. Dourte

On a global scale, periodic anomalies in sea surface temperatures coupled with shifts in atmospheric pressure and winds, such as those associated with the El Niño Southern Oscillation (ENSO), can have profound impacts on weather conditions. ENSO affects atmospheric circulation patterns well into the midlatitudes and is the leading driver of seasonal climate variability in the United States. Tremendous advances have been made in predicting the occurrence of ENSO events with confidence three to six months in advance. This 5-page fact sheet discusses the ENSO climatology tool as well as possible challenges. Written by Caroline Staub, Clyde Fraisse, Eduardo Gelcer, and Daniel Dourte, and published by the UF Department of Agricultural and Biological Engineering, March 2017.


2015 ◽  
Vol 6 (2) ◽  
pp. 2339-2381 ◽  
Author(s):  
J. Mikšovský ◽  
E. Holtanová ◽  
P. Pišoft

Abstract. Monthly near-surface temperature anomalies from several gridded datasets (GISTEMP, Berkeley Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and compared with regard to the presence of components attributable to external climate forcings (anthropogenic, solar and volcanic) and to major internal climate variability modes (El Niño/Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and variability characterized by the Trans-Polar Index). Multiple linear regression was used to separate components related to individual explanatory variables in local monthly temperatures as well as in their global means, over the 1901–2010 period. Strong correlations of temperature and anthropogenic forcing were confirmed for most of the globe, whereas only weaker and mostly statistically insignificant connections to solar activity were indicated. Imprints of volcanic forcing were found to be largely insignificant in the local temperatures, in contrast to the clear volcanic signature in their global averages. An attention was also paid to the manifestations of short-term time shifts in the responses to the forcings, and to differences in the spatial fingerprints detected from individual temperature datasets: it is shown that although the resemblance of the response patterns is usually strong, some regional contrasts appear. Noteworthy differences from the other datasets were found especially for the 20th Century Reanalysis, particularly for the components attributable to anthropogenic and volcanic forcing over land, but also in some of the teleconnection patterns related to the internal variability modes.


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2021 ◽  
Vol 13 (11) ◽  
pp. 2081
Author(s):  
Elisa Adirosi ◽  
Mario Montopoli ◽  
Alessandro Bracci ◽  
Federico Porcù ◽  
Vincenzo Capozzi ◽  
...  

The high relevance of satellites for collecting information regarding precipitation at global scale implies the need of a continuous validation of satellite products to ensure good data quality over time and to provide feedback for updating and improving retrieval algorithms. However, validating satellite products using measurements collected by sensors at ground is still a challenging task. To date, the Dual-frequency Precipitation Radar (DPR) aboard the Core Satellite of the Global Precipitation Measurement (GPM) mission is the only active sensor able to provide, at global scale, vertical profiles of rainfall rate, radar reflectivity, and Drop Size Distribution (DSD) parameters from space. In this study, we compare near surface GPM retrievals with long time series of measurements collected by seven laser disdrometers in Italy since the launch of the GPM mission. The comparison shows limited differences in the performances of the different GPM algorithms, be they dual- or single-frequency, although in most cases, the dual-frequency algorithms present the better performances. Furthermore, the agreement between satellite and ground-based estimates depends on the considered precipitation variable. The agreement is very promising for rain rate, reflectivity factor, and the mass-weighted mean diameter (Dm), while the satellite retrievals need to be improved for the normalized gamma DSD intercept parameter (Nw).


2021 ◽  
pp. 1-48
Author(s):  
Olivia Martius ◽  
Kathrin Wehrli ◽  
Marco Rohrer

AbstractThree sets of model experiments are performed with the Community Earth System Model to study the role of soil moisture anomalies as a boundary forcing for the formation of upper-level Rossby wave patterns during Southern Hemisphere summer. In the experiments, soil moisture over Australia is set to ±1STD of an ERA-Interim reanalysis derived soil moisture reconstruction for the years 2009 to 2016 and 50 ensemble members are run. The local response is a positive heating anomaly in the dry simulations that results in a thermal low-like circulation anomaly with an anomalous surface low and upper-level anticyclone. Significant differences in convective rainfall over Australia are related to differences in convective instability and associated with changes in near surface moisture and moisture advection patterns. A circum-hemispheric flow response is identified both in the upper-level flow and in the surface storm tracks that overall resembles a positive Southern Annular Mode-like flow anomaly in the dry simulations. The structure of this atmospheric response strongly depends on the background flow. The results point to a modulation of the hemispheric flow response to the forcing over Australia by the El Niño Southern Oscillation. Significant changes of precipitation over the Maritime continent and South Africa are found and significant differences in the frequency of surface cyclones are present all along the storm tracks.


2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


Sign in / Sign up

Export Citation Format

Share Document