scholarly journals Investigating the Roles of External Forcing and Ocean Circulation on the Atlantic Multidecadal SST Variability in a Large Ensemble Climate Model Hierarchy

2021 ◽  
pp. 1-51
Author(s):  
Lisa N. Murphy ◽  
Jeremy M. Klavans ◽  
Amy C. Clement ◽  
Mark A. Cane

AbstractThis paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations.

2020 ◽  
Author(s):  
Alessio Bellucci ◽  
Marianna Benassi ◽  
Silvio Gualdi ◽  
Annarita Mariotti

<p>Understanding processes and mechanisms which contribute to decadal climate variability is a crucial step in the development of a reliable prediction system, and as such it constitutes an important segment of the activities carried forward by the EU-funded Horizon 2020 EUCP project.</p><p>Sea surface temperature (SST) variability in the North Atlantic is known to be a key source of decadal predictability for the Euro-Atlantic sector. However, the nature of the observed variability is at the core of a long-standing debate.</p><p>In this work, we investigate the origins of North Atlantic SST variability, focusing on a specific event: the mid-20<sup>th</sup> century (1940-1975) “warm-to-cold” transition. This event is particularly interesting as it represents a well documented decadal-scale fluctuation of the observed climate record and can be used as a suitable test-bed to evaluate the relative skill of initialized versus non-initialized (historical) climate simulations.</p><p>Several mechanisms and processes have been taken into account to explain the cooling in the middle of 20th century, ranging from a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) to an increase in anthropogenic aerosol. Here the 1940-1975 transition is examined firstly in the NCAR Large Ensemble (NCAR-LENS), aiming to further explore the role of the possible drivers. Despite the lack of a realistic model state initialization, the NCAR-LENS shows some skill in capturing the North Atlantic SST transition, suggesting a non-negligible influence of the external forcing. Some lag between observations and model results is found, with the ensemble mean SST leading the onset of the observed transition by about ten years. This is consistent with previous studies, where some evidence was found of the driving role of anthropogenic aerosol and greenhouse gas forcing. In contrast, the simultaneous ocean dynamic response (AMOC) exhibits a large intra-member spread. This finding corroborates the hypothesis of a non-oceanic driver for the decadal-scale SST fluctuation. The same episode is then analysed in the NCAR Decadal Prediction Large Ensemble (NCAR-DPLE), which shares the same model code, configuration details, component resolutions, and external forcing datasets as for the non-initialized LENS ensemble. This allows a rigorous attribution of the relative roles of initialization, (mainly constraining the ocean-driven internal variability) and external forcing conditions on the overall skill in reproducing the Atlantic decadal variability, with clear implications for decadal predictability and predictions.</p><p> </p>


2019 ◽  
Vol 32 (16) ◽  
pp. 4893-4917 ◽  
Author(s):  
Karsten Haustein ◽  
Friederike E. L. Otto ◽  
Victor Venema ◽  
Peter Jacobs ◽  
Kevin Cowtan ◽  
...  

AbstractThe early twentieth-century warming (EW; 1910–45) and the mid-twentieth-century cooling (MC; 1950–80) have been linked to both internal variability of the climate system and changes in external radiative forcing. The degree to which either of the two factors contributed to EW and MC, or both, is still debated. Using a two-box impulse response model, we demonstrate that multidecadal ocean variability was unlikely to be the driver of observed changes in global mean surface temperature (GMST) after AD 1850. Instead, virtually all (97%–98%) of the global low-frequency variability (>30 years) can be explained by external forcing. We find similarly high percentages of explained variance for interhemispheric and land–ocean temperature evolution. Three key aspects are identified that underpin the conclusion of this new study: inhomogeneous anthropogenic aerosol forcing (AER), biases in the instrumental sea surface temperature (SST) datasets, and inadequate representation of the response to varying forcing factors. Once the spatially heterogeneous nature of AER is accounted for, the MC period is reconcilable with external drivers. SST biases and imprecise forcing responses explain the putative disagreement between models and observations during the EW period. As a consequence, Atlantic multidecadal variability (AMV) is found to be primarily controlled by external forcing too. Future attribution studies should account for these important factors when discriminating between externally forced and internally generated influences on climate. We argue that AMV must not be used as a regressor and suggest a revised AMV index instead [the North Atlantic Variability Index (NAVI)]. Our associated best estimate for the transient climate response (TCR) is 1.57 K (±0.70 at the 5%–95% confidence level).


2020 ◽  
Author(s):  
Andrea Böhnisch ◽  
Ralf Ludwig ◽  
Martin Leduc

<p>The ClimEx-project ("Climate change and hydrological extreme events"; www.climex-project.org) provides a single-model initial-condition ensemble that is unprecedented in terms of size, resolution and domain coverage: 50 members of the Canadian Earth System Model version 2 (CanESM2 Large Ensemble, 2.8° spatial resolution) are downscaled using the Canadian Regional Climate Model version 5 (CRCM5 Large Ensemble, 0.11° spatial and up to hourly temporal resolution) over two domains, Europe and northeastern North America. The high-resolution climate information serves as input for hydrological simulations to investigate the impact of internal variability and climate change on hydrometeorological extremes.</p><p>This study evaluates the downscaling of a teleconnection which affects northern hemisphere climate variability, the North Atlantic Oscillation (NAO), within the nested single-model large ensemble of the ClimEx project. The overall goal of this study is to assess whether the range of NAO internal variability is represented consistently between the driving global climate model (GCM, i.e., the CanESM2) and the nested regional climate model (RCM, i.e., the CRCM5).</p><p>The NAO pressure dipole is quantified in the CanESM2-LE; responses of mean surface air temperature and total precipitation sum to changes in the NAO index are evaluated within a Central European domain in both the CanESM2-LE and the CRCM5-LE. NAO–response relationships are expressed via Pearson correlation coefficients and the change per unit index change for historical (1981–2010) and future (2070–2099) winters.</p><p>Results show that statistically robust NAO patterns are found in the CanESM2-LE under current forcing conditions, and reproductions of the NAO flow pattern present in the CanESM2-LE produce plausible temperature and precipitation responses in the high-resolution CRCM5-LE. The NAO–response relationship is more strongly evolved in the CRCM5-LE than in the CanESM2-LE, but the inter-member spread shows no significant differences: thus internal variability expressed as inter-member spread can be seen as being represented consistently between the GCM and RCM. NAO–response relationships weaken in the future period in both the CanESM2-LE and CRCM5-LE, suggesting that the NAO influence on Central European temperature and precipitation decreases.</p><p>The results stress the advantages of a single-model ensemble regarding the evaluation of internal variability. They also strengthen the validity of the nested ensemble for further impact modelling using RCM data only, since important large-scale teleconnections present in the driving GCM propagate properly to the fine scale dynamics in the RCM.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiv Priyam Raghuraman ◽  
David Paynter ◽  
V. Ramaswamy

AbstractThe observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24 Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be explained by internal variability. Instead, TEEI is achieved only upon accounting for the increase in anthropogenic radiative forcing and the associated climate response. TEEI is driven by a large decrease in reflected solar radiation and a small increase in emitted infrared radiation. This is because recent changes in forcing and feedbacks are additive in the solar spectrum, while being nearly offset by each other in the infrared. We conclude that the satellite record provides clear evidence of a human-influenced climate system.


2021 ◽  
Vol 15 (3) ◽  
pp. 1645-1662
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, the influence of both sources of climate variability must therefore be considered. Here we study the last millennium of glacier-length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier-length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability is the predominant source of length fluctuations for glaciers with a shorter response time (less than a few decades). However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that, for this climate model, most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


2016 ◽  
Author(s):  
Chantal Camenisch ◽  
Kathrin M. Keller ◽  
Melanie Salvisberg ◽  
Benjamin Amann ◽  
Martin Bauch ◽  
...  

Abstract. Throughout the last millennium, mankind was affected by prolonged deviations from the climate mean state. While periods like the Maunder Minimum in the 17th century have been assessed in greater detail, earlier cold periods such as the 15th century received much less attention due to the sparse information available. Based on new evidence from different sources ranging from proxy archives to model simulations, it is now possible to provide an end-to-end assessment about the climate state during an exceptionally cold period in the 15th century, the role of internal, unforced climate variability and external forcing in shaping these extreme climatic conditions, and the impacts on and responses of the medieval society in Central Europe. Climate reconstructions from a multitude of natural and human archives indicate that, during winter, the period of the early Spörer Minimum (1431–1440 CE) was the coldest decade in Central Europe in the 15th century. The particularly cold winters and normal but wet summers resulted in a strong seasonal cycle that challenged food production and led to increasing food prices, a subsistence crisis, and a famine in parts of Europe. As a consequence, authorities implemented adaptation measures, such as the installation of grain storage capacities, in order to be prepared for future events. The 15th century is characterised by a grand solar minimum and enhanced volcanic activity, which both imply a reduction of seasonality. Climate model simulations show that periods with cold winters and strong seasonality are associated with internal climate variability rather than external forcing. Accordingly, it is hypothesised that the reconstructed extreme climatic conditions during this decade occurred by chance and in relation to the partly chaotic, internal variability within the climate system.


2010 ◽  
Vol 6 (5) ◽  
pp. 1811-1852 ◽  
Author(s):  
A. Bozbiyik ◽  
M. Steinacher ◽  
F. Joos ◽  
T. F. Stocker

Abstract. CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes that are well documented in the literature but there is a clear distinction between northern and southern perturbations. Changes in the physical variables affect, in return, the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large re-organizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results.


2021 ◽  
Vol 21 (23) ◽  
pp. 17267-17289
Author(s):  
Mattia Righi ◽  
Johannes Hendricks ◽  
Christof Gerhard Beer

Abstract. A global aerosol–climate model, including a two-moment cloud microphysical scheme and a parametrization for aerosol-induced ice formation in cirrus clouds, is applied in order to quantify the impact of aviation soot on natural cirrus clouds. Several sensitivity experiments are performed to assess the uncertainties in this effect related to (i) the assumptions on the ice nucleation abilities of aviation soot, (ii) the representation of vertical updrafts in the model, and (iii) the use of reanalysis data to relax the model dynamics (the so-called nudging technique). Based on the results of the model simulations, a radiative forcing from the aviation soot–cirrus effect in the range of −35 to 13 mW m−2 is quantified, depending on the assumed critical saturation ratio for ice nucleation and active fraction of aviation soot but with a confidence level below 95 % in several cases. Simple idealized experiments with prescribed vertical velocities further show that the uncertainties on this aspect of the model dynamics are critical for the investigated effect and could potentially add a factor of about 2 of further uncertainty to the model estimates of the resulting radiative forcing. The use of the nudging technique to relax model dynamics is proved essential in order to identify a statistically significant signal from the model internal variability, while simulations performed in free-running mode and with prescribed sea-surface temperatures and sea-ice concentrations are shown to be unable to provide robust estimates of the investigated effect. A comparison with analogous model studies on the aviation soot–cirrus effect show a very large model diversity, with a conspicuous lack of consensus across the various estimates, which points to the need for more in-depth analyses on the roots of such discrepancies.


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

&lt;p&gt;While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.&lt;/p&gt;&lt;p&gt;Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228&amp;#8211;232.&lt;/p&gt;&lt;p&gt;Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.&lt;/p&gt;&lt;p&gt;Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-L&amp;#243;pez, C., H&amp;#225;t&amp;#250;n, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.&lt;/p&gt;&lt;p&gt;Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., M&amp;#252;ller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.&lt;/p&gt;&lt;p&gt;Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.&lt;/p&gt;&lt;p&gt;Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.&lt;/p&gt;


2020 ◽  
Vol 33 (7) ◽  
pp. 2871-2890 ◽  
Author(s):  
Sang-Ik Shin ◽  
Michael A. Alexander

AbstractProjected climate changes along the U.S. East and Gulf Coasts were examined using the eddy-resolving Regional Ocean Modeling System (ROMS). First, a control (CTRL) ROMS simulation was performed using boundary conditions derived from observations. Then climate change signals, obtained as mean seasonal cycle differences between the recent past (1976–2005) and future (2070–99) periods in a coupled global climate model under the RCP8.5 greenhouse gas trajectory, were added to the initial and boundary conditions of the CTRL in a second (RCP85) ROMS simulation. The differences between the RCP85 and CTRL simulations were used to investigate the regional effects of climate change. Relative to the coarse-resolution coupled climate model, the downscaled projection shows that SST changes become more pronounced near the U.S. East Coast, and the Gulf Stream is further reduced in speed and shifted southward. Moreover, the downscaled projection shows enhanced warming of ocean bottom temperatures along the U.S. East and Gulf Coasts, particularly in the Gulf of Maine and the Gulf of Saint Lawrence. The enhanced warming was related to an improved representation of the ocean circulation, including topographically trapped coastal ocean currents and slope water intrusion through the Northeast Channel into the Gulf of Maine. In response to increased radiative forcing, much warmer than present-day Labrador Subarctic Slope Waters entered the Gulf of Maine through the Northeast Channel, warming the deeper portions of the gulf by more than 4°C.


Sign in / Sign up

Export Citation Format

Share Document