scholarly journals A Limited Role for Unforced Internal Variability in Twentieth-Century Warming

2019 ◽  
Vol 32 (16) ◽  
pp. 4893-4917 ◽  
Author(s):  
Karsten Haustein ◽  
Friederike E. L. Otto ◽  
Victor Venema ◽  
Peter Jacobs ◽  
Kevin Cowtan ◽  
...  

AbstractThe early twentieth-century warming (EW; 1910–45) and the mid-twentieth-century cooling (MC; 1950–80) have been linked to both internal variability of the climate system and changes in external radiative forcing. The degree to which either of the two factors contributed to EW and MC, or both, is still debated. Using a two-box impulse response model, we demonstrate that multidecadal ocean variability was unlikely to be the driver of observed changes in global mean surface temperature (GMST) after AD 1850. Instead, virtually all (97%–98%) of the global low-frequency variability (>30 years) can be explained by external forcing. We find similarly high percentages of explained variance for interhemispheric and land–ocean temperature evolution. Three key aspects are identified that underpin the conclusion of this new study: inhomogeneous anthropogenic aerosol forcing (AER), biases in the instrumental sea surface temperature (SST) datasets, and inadequate representation of the response to varying forcing factors. Once the spatially heterogeneous nature of AER is accounted for, the MC period is reconcilable with external drivers. SST biases and imprecise forcing responses explain the putative disagreement between models and observations during the EW period. As a consequence, Atlantic multidecadal variability (AMV) is found to be primarily controlled by external forcing too. Future attribution studies should account for these important factors when discriminating between externally forced and internally generated influences on climate. We argue that AMV must not be used as a regressor and suggest a revised AMV index instead [the North Atlantic Variability Index (NAVI)]. Our associated best estimate for the transient climate response (TCR) is 1.57 K (±0.70 at the 5%–95% confidence level).

2017 ◽  
Vol 30 (16) ◽  
pp. 6585-6589 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler

Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, [Formula: see text] must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and [Formula: see text] In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby [Formula: see text] becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on [Formula: see text] These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and [Formula: see text] and thus provides little basis for revising this lower bound.


2019 ◽  
Vol 19 (10) ◽  
pp. 6821-6841 ◽  
Author(s):  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Wan Ting Katty Huang ◽  
Petri Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. This study assesses the change in anthropogenic aerosol forcing from the mid-1970s to the mid-2000s. Both decades had similar global-mean anthropogenic aerosol optical depths but substantially different global distributions. For both years, we quantify (i) the forcing spread due to model-internal variability and (ii) the forcing spread among models. Our assessment is based on new ensembles of atmosphere-only simulations with five state-of-the-art Earth system models. Four of these models will be used in the sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). Here, the complexity of the anthropogenic aerosol has been reduced in the participating models. In all our simulations, we prescribe the same patterns of the anthropogenic aerosol optical properties and associated effects on the cloud droplet number concentration. We calculate the instantaneous radiative forcing (RF) and the effective radiative forcing (ERF). Their difference defines the net contribution from rapid adjustments. Our simulations show a model spread in ERF from −0.4 to −0.9 W m−2. The standard deviation in annual ERF is 0.3 W m−2, based on 180 individual estimates from each participating model. This result implies that identifying the model spread in ERF due to systematic differences requires averaging over a sufficiently large number of years. Moreover, we find almost identical ERFs for the mid-1970s and mid-2000s for individual models, although there are major model differences in natural aerosols and clouds. The model-ensemble mean ERF is −0.54 W m−2 for the pre-industrial era to the mid-1970s and −0.59 W m−2 for the pre-industrial era to the mid-2000s. Our result suggests that comparing ERF changes between two observable periods rather than absolute magnitudes relative to a poorly constrained pre-industrial state might provide a better test for a model's ability to represent transient climate changes.


2021 ◽  
pp. 1-51
Author(s):  
Lisa N. Murphy ◽  
Jeremy M. Klavans ◽  
Amy C. Clement ◽  
Mark A. Cane

AbstractThis paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations.


2021 ◽  
Author(s):  
Stephanie Fiedler ◽  
Klaus Wyser ◽  
Rogelj Joeri ◽  
Twan van Noije

<p>The COVID-19 pandemic has led to unprecedented reductions in socio-economic activities. Associated decreases in anthropogenic aerosol emissions are not represented in the original CMIP6 emission scenarios. Here we estimate the implications of the pandemic for the aerosol forcing in 2020 and quantify the spread in aerosol forcing associated with the differences in the post-pandemic recovery pathways. To this end, we use new emission scenarios taking the COVID-19 crisis into account and projecting different socio-economic developments until 2050 with fossil-fuel based and green pathways (Forster et al., 2020). We use the new emission data to generate input for the anthropogenic aerosol parameterization MACv2-SP for CMIP6 models. In this presentation, we first show the results for the anthropogenic aerosol optical depth and associated effects on clouds from the new MACv2-SP data for 2020 to 2050 (Fiedler et al., in review). We then use the MACv2-SP data to provide estimates of the effective radiative effects of the anthropogenic aerosols for 2020 and 2050. Our forcing estimates are based on new atmosphere-only simulations with the CMIP6 model EC-Earth3. The model uses MACv2-SP to represent aerosol-radiation and aerosol-cloud interactions including aerosol effects on cloud lifetime. For each anthropogenic aerosol pattern, we run EC-Earth3 simulations for fifty years to substantially reduce the impact of model-internal variability on the forcing estimate. Our results highlight: (1) a change of +0.04 Wm<sup>-2</sup> in the global mean effective radiative forcing of anthropogenic aerosols for 2020 due to the pandemic, which is small compared to the magnitude of internal variability, (2) a spread of -0.38 to -0.68 Wm<sup>-2</sup> for the effective radiative forcing associated with anthropogenic aerosols in 2050 depending on the recovery scenario in MACv2-SP, and (3) a more negative (stronger) anthropogenic aerosol forcing for a strong green than a moderate green development in 2050 due to higher ammonium emissions in a highly decarbonized society (Fiedler et al., in review). The new MACv2-SP data are now used in climate models participating in the model intercomparison project on the climate response to the COVID-19 crisis (Covid-MIP, Jones et al., in review, Lamboll et al., in review).</p><p><strong>References:</strong></p><p>Fiedler, S., Wyser, K., Joeri, R., and van Noije, T.: Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery, in review, [preprint] https://doi.org/10.1002/essoar.10504704.1.</p><p>Forster, P.M., Forster, H.I., Evans, M.J. et al.: Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 10, 913–919, 2020, https://doi.org/10.1038/s41558-020-0883-0.</p><p>Jones. C., Hickman, J., Rumbold, S., et al.: The Climate Response to Emissions Reductions due to COVID-19, Geophy. Res. Lett., in review.</p><p>Lamboll, R. D., Jones, C. D., Skeie, R. B., Fiedler, S., Samset, B. H., Gillett, N. P., Rogelj, J., and Forster, P. M.: Modifying emission scenario projections to account for the effects of COVID-19: protocol for Covid-MIP, in review, [preprint] https://doi.org/10.5194/gmd-2020-373.</p>


2018 ◽  
Author(s):  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
W. T. Katty Huang ◽  
Petri Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. The radiative forcing of anthropogenic aerosol remains a key uncertainty in the understanding of climate change. This study quantifies the model spread in aerosol forcing associated with (i) variability internal to the atmosphere and (ii) differences in the model representation of weather. We do so by performing ensembles of atmosphere-only simulations with four state-of-the-art Earth system models, three of which will be used in the sixth coupled model inter-comparison project (CMIP6, Eyring et al., 2016). In those models we reduce the complexity of the anthropogenic aerosol by prescribing the same annually-repeating patterns of the anthropogenic aerosol optical properties and associated effects on the cloud reflectivity. We quantify a comparably small model spread in the long-term averaged ERF compared to the overall possible range in annual ERF estimates associated with model-internal variability. This implies that identifying the true model spread in ERF associated with differences in the representation of meteorological processes and natural aerosol requires averaging over a sufficiently large number of annual estimates. We characterize the model diversity in clouds and use satellite products as benchmarks. Despite major inter-model differences in natural aerosol and clouds, all models show only a small change in the global-mean ERF due to the substantial change in the global anthropogenic aerosol distribution between the mid-1970s and mid-2000s, the ensemble mean ERF being −0.47 Wm−2 for the mid-1970s and −0.51 Wm−2 for the mid-2000s. This result suggests that inter-comparing ERF changes between two periods rather than absolute magnitudes relative to pre-industrial might provide a more stringent test for a model's ability for representing climate evolutions.


2012 ◽  
Vol 25 (6) ◽  
pp. 2146-2161 ◽  
Author(s):  
Martin Hoerling ◽  
Jon Eischeid ◽  
Judith Perlwitz ◽  
Xiaowei Quan ◽  
Tao Zhang ◽  
...  

Abstract The land area surrounding the Mediterranean Sea has experienced 10 of the 12 driest winters since 1902 in just the last 20 years. A change in wintertime Mediterranean precipitation toward drier conditions has likely occurred over 1902–2010 whose magnitude cannot be reconciled with internal variability alone. Anthropogenic greenhouse gas and aerosol forcing are key attributable factors for this increased drying, though the external signal explains only half of the drying magnitude. Furthermore, sea surface temperature (SST) forcing during 1902–2010 likely played an important role in the observed Mediterranean drying, and the externally forced drying signal likely also occurs through an SST change signal. The observed wintertime Mediterranean drying over the last century can be understood in a simple framework of the region’s sensitivity to a uniform global ocean warming and to modest changes in the ocean’s zonal and meridional SST gradients. Climate models subjected to a uniform +0.5°C warming of the world oceans induce eastern Mediterranean drying but fail to generate the observed widespread Mediterranean drying pattern. For a +0.5°C SST warming confined to tropical latitudes only, a dry signal spanning the entire Mediterranean region occurs. The simulated Mediterranean drying intensifies further when the Indian Ocean is warmed +0.5°C more than the remaining tropical oceans, an enhanced drying signal attributable to a distinctive atmospheric circulation response resembling the positive phase of the North Atlantic Oscillation. The extent to which these mechanisms and the region’s overall drying since 1902 reflect similar mechanisms operating in association with external radiative forcing are discussed.


2006 ◽  
Vol 19 (17) ◽  
pp. 4294-4307 ◽  
Author(s):  
Xuebin Zhang ◽  
Francis W. Zwiers ◽  
P. A. Stott

Abstract Using an optimal detection technique and climate change simulations produced with two versions of two GCMs, we have assessed the causes of twentieth-century temperature changes from global to regional scales. Our analysis is conducted in nine spatial domains: 1) the globe; 2) the Northern Hemisphere; four large regions in the Northern Hemispheric midlatitudes covering 30°–70°N including 3) Eurasia, 4) North America, 5) Northern Hemispheric land only, 6) the entire 30°–70°N belt; and three smaller regions over 7) southern Canada, 8) southern Europe, and 9) China. We find that the effect of anthropogenic forcing on climate is clearly detectable at global through regional scales. The effect of combined greenhouse gases and sulfate aerosol forcing is detectable in all nine domains in annual and seasonal mean temperatures observed during the second half of the twentieth century. The effect of greenhouse gases can also be separated from that of sulfate aerosols over this period at continental and regional scales. Uncertainty in these results is larger in the smaller spatial domains. Detection is improved when an ensemble of models is used to estimate the response to anthropogenic forcing and the underlying internal variability of the climate system. Our detection results hold after removal of North Atlantic Oscillation (NAO)-related variability in temperature observations—variability that may or may not be associated with anthropogenic forcing. They also continue to hold when our estimates of natural internal climate variability are doubled.


2021 ◽  
Author(s):  
Karsten Haustein

<p class="p1">The role of external (radiative) forcing factors and internal unforced (ocean) low-frequency variations in the instrumental global temperature record are still hotly debated. More recent findings point towards a larger contribution from changes in external forcing, but the jury is still out. While the estimation of the human-induced total global warming fraction since pre-industrial times is fairly robust and mostly independent of multidecadal internal variability, this is not necessarily the case for key regional features such as Arctic amplification or enhanced warming over continental land areas. Accounting for the slow global temperature adjustment after strong volcanic eruptions, the spatially heterogeneous nature of anthropogenic aerosol forcing and known biases in the sea surface temperature record, almost all of the multidecadal fluctuations observed over at least the last 160+ years can be explained without a relevant role for internal variability. Using a two-box response model framework, I will demonstrate that not only multidecadal variability is very likely a forced response, but warming trends over the past 40+ years are entirely attributable to human factors. Repercussions for amplifed European (or D-A-CH for that matter) warming and associated implications for extreme weather events are discussed. Further consideration is given to the communications aspect of such critical results as well as the question of wider societal impacts.</p>


2013 ◽  
Vol 9 (1) ◽  
pp. 393-421 ◽  
Author(s):  
L. Fernández-Donado ◽  
J. F. González-Rouco ◽  
C. C. Raible ◽  
C. M. Ammann ◽  
D. Barriopedro ◽  
...  

Abstract. Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.


2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


Sign in / Sign up

Export Citation Format

Share Document