A multimodel investigation of atmospheric mechanisms for driving Arctic amplification in warmer climates

2021 ◽  
pp. 1-55
Author(s):  
Deepashree Dutta ◽  
Steven C. Sherwood ◽  
Katrin J. Meissner ◽  
Alex Sen Gupta ◽  
Daniel J. Lunt ◽  
...  

AbstractWhen simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low and mid-level clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealised polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO2 or tropical temperatures that likely characterised past warm climates, reduces the need for such large OHT increases.

2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


2019 ◽  
Vol 15 (4) ◽  
pp. 1375-1394 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Marina Suzuki

Abstract. There remain substantial uncertainties in future projections of Arctic climate change. There is a potential to constrain these uncertainties using a combination of paleoclimate simulations and proxy data, but such a constraint must be accompanied by physical understanding on the connection between past and future simulations. Here, we examine the relevance of an Arctic warming mechanism in the mid-Holocene (MH) to the future with emphasis on process understanding. We conducted a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future Representative Concentration Pathway (RCP) 4.5 scenario forcings. It is found that many of the dominant processes that amplify Arctic warming over the ocean from late autumn to early winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). The positive albedo feedback in summer results in an increase in oceanic heat release in the colder season when the atmospheric stratification is strong, and an increased greenhouse effect from clouds helps amplify the warming during the season with small insolation. The seasonal progress was elucidated by the decomposition of the factors associated with sea surface temperature, ice concentration, and ice surface temperature changes. We also quantified the contribution of individual components to the inter-model variance in the surface temperature changes. The downward clear-sky longwave radiation is one of major contributors to the model spread throughout the year. Other controlling terms for the model spread vary with the season, but they are similar between the MH and the future in each season. This result suggests that the MH Arctic change may not be analogous to the future in some seasons when the temperature response differs, but it is still useful to constrain the model spread in the future Arctic projection. The cross-model correlation suggests that the feedbacks in preceding seasons should not be overlooked when determining constraints, particularly summer sea ice cover for the constraint of autumn–winter surface temperature response.


2021 ◽  
Author(s):  
Xiaozhuo Sang ◽  
Xiu-Qun Yang ◽  
Lingfeng Tao ◽  
Jiabei Fang ◽  
Xuguang Sun

Abstract The Arctic warming, especially during winter, has been almost twice as large as the global average since the late 1990s, which is known as the Arctic amplification. Yet linkage between the amplified Arctic warming and the midlatitude change is still under debate. This study examines the decadal changes of wintertime poleward heat and moisture transports between two 18-yr epochs (1999–2016 and 1981–1998) with five atmospheric reanalyses. It is found that the wintertime Arctic warming induces an amplification of the high latitude stationary wave component of zonal wavenumber one but a weakening of the wavenumber two. These stationary wave changes enhance poleward heat and moisture transports, which are conducive to further Arctic warming and moistening, acting as a positive feedback onto the Arctic warming. Meanwhile, the Arctic warming reduces atmospheric baroclinicity and thus weakens synoptic eddy activities in the high latitudes. The decreased transient eddy activities reduce poleward heat and moisture transports, which decrease the Arctic temperature and moisture, acting as a negative feedback onto the Arctic warming. The total poleward heat transport contributes little to the Arctic warming, since the increased poleward heat transport by stationary waves is nearly canceled by the decreased transport by transient eddies. However, the total poleward moisture transport increases over most areas of the high latitudes that is dominated by the increased transport by stationary waves, which provides a significant net positive feedback onto the Arctic warming and moistening. Such a poleward moisture transport feedback may be particularly crucial to the amplified Arctic warming during winter when the ice-albedo feedback vanishes.


2008 ◽  
Vol 21 (3) ◽  
pp. 561-575 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, where suppressing the Atlantic meridional overturning circulation (MOC) causes a reduction in northward ocean heat transport of up to 0.75 PW (i.e., 75%), the atmosphere compensates by increasing its northward transport of moist static energy. This compensation is very efficient at low latitudes and near complete at the equator throughout the experiment, but is incomplete farther north across the northern midlatitude storm tracks. The change in atmosphere energy transport enables the model to find a new global-mean radiative equilibrium after 240 yr. In a perturbed physics ensemble of HadCM3 it was found that time-averaged meridional energy transports in ocean and atmosphere can act opposingly. Where model formulation causes an unbalanced mean climate state, for example, an excessive top-of-the-atmosphere radiative surplus at low latitudes, the atmosphere increases its poleward energy transport to disperse this excess. MOC and ocean poleward heat transport tend to be reduced in such model versions, and this offsets the increased poleward atmospheric transport of the low-latitude energy surplus. Model versions that are close to net radiative equilibrium also have ocean heat transport and MOC close to observed values.


2011 ◽  
Vol 24 (5) ◽  
pp. 1451-1460 ◽  
Author(s):  
Irina Mahlstein ◽  
Reto Knutti

Abstract The Arctic climate is governed by complex interactions and feedback mechanisms between the atmosphere, ocean, and solar radiation. One of its characteristic features, the Arctic sea ice, is very vulnerable to anthropogenically caused warming. Production and melting of sea ice is influenced by several physical processes. The authors show that the northward ocean heat transport is an important factor in the simulation of the sea ice extent in the current general circulation models. Those models that transport more energy to the Arctic show a stronger future warming, in the Arctic as well as globally. Larger heat transport to the Arctic, in particular in the Barents Sea, reduces the sea ice cover in this area. More radiation is then absorbed during summer months and is radiated back to the atmosphere in winter months. This process leads to an increase in the surface temperature and therefore to a stronger polar amplification. The models that show a larger global warming agree better with the observed sea ice extent in the Arctic. In general, these models also have a higher spatial resolution. These results suggest that higher resolution and greater complexity are beneficial in simulating the processes relevant in the Arctic and that future warming in the high northern latitudes is likely to be near the upper range of model projections, consistent with recent evidence that many climate models underestimate Arctic sea ice decline.


2018 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Marina Suzuki

Abstract. There remain substantial uncertainties in future projections of Arctic climate change. Schmidt et al. (2014) demonstrated the potential to constrain these uncertainties using a combination of paleoclimate simulations and proxy data. They found a weak correlation between sea ice changes in the mid-Holocene (MH) and in future projections, relative to the modern period. Such an “emergent constraint” provides a powerful tool to directly reduce the range of uncertainty, provided that the necessary paleoenvironmental information is available. In the current study, we examine the relevance of Arctic warming in the past to the future through process understanding, rather than seeking a statistical relation. We conducted a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future RCP4.5-scenario forcing. We found that many of the dominant processes that amplify Arctic warming from late autumn to winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). We also quantified the contribution of individual processes to the inter-model variance in the surface temperature changes. The controlling term varies with the season, but the results suggest that the models’ representations of the surface albedo feedback, cloud greenhouse effect, turbulent surface heat fluxes, and indirect atmospheric stratification are important contributors. Based on the results for the Arctic warming mechanism obtained from this study, we conclude that proxy records of Arctic warming during the MH contain useful information that is relevant for understanding future Arctic climate change.


2020 ◽  
Author(s):  
Lili Ren ◽  
Yang Yang ◽  
Hailong Wang ◽  
Rudong Zhang ◽  
Pinya Wang ◽  
...  

Abstract. Observations show that the concentrations of Arctic sulfate and black carbon (BC) aerosols have declined since the early 1980s, which potentially contributed to the recent rapid Arctic warming. In this study, a global aerosol-climate model equipped with an Explicit Aerosol Source Tagging (CAM5-EAST) is applied to quantify the source apportionment of aerosols in the Arctic from sixteen source regions and the role of aerosol variations in the Arctic surface temperature change over the past four decades (1980–2018). The CAM5-EAST simulated surface concentrations of sulfate and BC in the Arctic had a decrease of 43 % and 23 %, respectively, in 2014–2018 relative to 1980–1984, mainly due to the reduction of emissions from Europe, Russia and Arctic local sources. Increases in emissions from South and East Asia led to positive trends of Arctic sulfate and BC in the upper troposphere. Changes in radiative forcing of sulfate and BC through aerosol-radiation interactions are found to exert a +0.145 K Arctic surface warming during 2014–2018 with respect to 1980–1984, with the largest contribution (61 %) by sulfate decrease, especially originating from the mid-latitude regions. The changes in atmospheric BC outside the Arctic produced an Arctic warming of +0.062 K, partially offset by −0.005 K of cooling due to atmospheric BC within the Arctic and −0.041 K related to the weakened snow/ice albedo effect of BC. Through aerosol-cloud interactions, the sulfate reduction gave an Arctic warming of +0.193 K between the first and last five years of 1980–2018, the majority of which is due to the mid-latitude emission change. Our results suggest that changes in aerosols over the mid-latitudes of the Northern Hemisphere have a larger impact on Arctic temperature than other regions associated with enhanced poleward heat transport from the aerosol-induced stronger meridional temperature gradient. The combined aerosol effects of sulfate and BC together produce an Arctic surface warming of +0.297 K during 1980–2018, explaining approximately 20 % of the observed Arctic warming during the same time period.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


2021 ◽  
Vol 13 (21) ◽  
pp. 4464
Author(s):  
Jiawen Xu ◽  
Xiaotong Zhang ◽  
Chunjie Feng ◽  
Shuyue Yang ◽  
Shikang Guan ◽  
...  

Surface upward longwave radiation (SULR) is an indicator of thermal conditions over the Earth’s surface. In this study, we validated the simulated SULR from 51 Coupled Model Intercomparison Project (CMIP6) general circulation models (GCMs) through a comparison with ground measurements and satellite-retrieved SULR from the Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF). Moreover, we improved the SULR estimations by a fusion of multiple CMIP6 GCMs using multimodel ensemble (MME) methods. Large variations were found in the monthly mean SULR among the 51 CMIP6 GCMs; the bias and root mean squared error (RMSE) of the individual CMIP6 GCMs at 133 sites ranged from −3 to 24 W m−2 and 22 to 38 W m−2, respectively, which were higher than those found between the CERES EBAF and GCMs. The CMIP6 GCMs did not improve the overestimation of SULR compared to the CMIP5 GCMs. The Bayesian model averaging (BMA) method showed better performance in simulating SULR than the individual GCMs and simple model averaging (SMA) method, with a bias of 0 W m−2 and an RMSE of 19.29 W m−2 for the 133 sites. In terms of the global annual mean SULR, our best estimation for the CMIP6 GCMs using the BMA method was 392 W m−2 during 2000–2014. We found that the SULR varied between 386 and 393 W m−2 from 1850 to 2014, exhibiting an increasing tendency of 0.2 W m−2 per decade (p < 0.05).


2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

&lt;p&gt;Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document