Large-scale state and evolution of the atmosphere and ocean during PISTON 2018

2021 ◽  
pp. 1-59
Author(s):  
Adam H. Sobel ◽  
Janet Sprintall ◽  
Eric D. Maloney ◽  
Zane K. Martin ◽  
Shuguang Wang ◽  
...  

AbstractThe Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign inAugust-October 2018. The R/V Thomas G. Thompson made two cruises in thewestern North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis data sets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200Wm−2) out of the ocean, due to both large latent heat flux and cloud shading associated with widespread deep convection. Underway conductivity-temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 meters were likely related to the generation and propagation of near-inertial currents.

2015 ◽  
Vol 143 (1) ◽  
pp. 88-110 ◽  
Author(s):  
Myung-Sook Park ◽  
Hyeong-Seog Kim ◽  
Chang-Hoi Ho ◽  
Russell L. Elsberry ◽  
Myong-In Lee

Abstract Tropical cyclone formation close to the coastline of the Asian continent presents a significant threat to heavily populated coastal countries. A case study of Tropical Storm Mekkhala (2008) that developed off the coast of Vietnam is presented using the high-resolution analyses of the European Centre for Medium-Range Weather Forecasts/Year of Tropical Convection and multiple satellite observations. The authors have analyzed contributions to the formation from large-scale intraseasonal variability, synoptic perturbations, and mesoscale convective systems (MCSs). Within a large-scale westerly wind burst (WWB) associated with the Madden–Julian oscillation (MJO), synoptic perturbations generated by two preceding tropical cyclones initiated the pre-Mekkhala low-level vortex over the Philippine Sea. Typhoon Hagupit produced a synoptic-scale wave train that contributed to the development of Jangmi, but likely suppressed the Mekkhala formation. The low-level vortex of the pre-Mekkhala disturbance was then initiated in a confluent zone between northeasterlies in advance of Typhoon Jangmi and the WWB. A key contribution to the development of Mekkhala was from diurnally varying MCSs that were invigorated in the WWB. The oceanic MCSs, which typically develop off the west coast of the Philippines in the morning and dissipate in the afternoon, were prolonged beyond the regular diurnal cycle. A combination with the MCSs developing downstream of the Philippines led to the critical structure change of the oceanic convective cluster, which implies the critical role of mesoscale processes. Therefore, the diurnally varying mesoscale convective processes over both the ocean and land are shown to have an essential role in the formation of Mekkhala in conjunction with large-scale MJO and the synoptic-scale TC influences.


2018 ◽  
Vol 31 (4) ◽  
pp. 1377-1397 ◽  
Author(s):  
Haikun Zhao ◽  
Xingyi Duan ◽  
G. B. Raga ◽  
Fengpeng Sun

A significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the positive SSTAs have been observed over the tropical Atlantic since 1995, with a pattern nearly opposite to that seen before 1995. Moreover, the large-scale contributors to the NATL TC frequency increase since 1995 are likely related to both local and remote SSTAs. Quantification of the impacts of local and remote SSTAs on the increase of TC frequency over the NATL basin and the physical mechanisms require numerical simulations and further observational analyses.


2015 ◽  
Vol 143 (7) ◽  
pp. 2459-2484 ◽  
Author(s):  
Andrew B. Penny ◽  
Patrick A. Harr ◽  
Michael M. Bell

Abstract Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system. The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.


2020 ◽  
Author(s):  
Torben Koenigk ◽  
Ramon Fuentes-Franco ◽  
Virna Meccia ◽  
Oliver Gutjahr ◽  
Laura C. Jackson ◽  
...  

Abstract. Simulations from seven global coupled climate models performed at high and standard resolution as part of the High Resolution Model Intercomparison Project (HighResMIP) have been analyzed to study the impact of horizontal resolution in both ocean and atmosphere on deep ocean convection in the North Atlantic and to evaluate the robustness of the signal across models. The representation of convection varies strongly among models. Compared to observations from ARGO-floats, most models substantially overestimate deep water formation in the Labrador Sea. In the Greenland Sea, some models overestimate convection while others show too weak convection. In most models, higher ocean resolution leads to increased deep convection in the Labrador Sea and reduced convection in the Greenland Sea. Increasing the atmospheric resolution has only little effect on the deep convection, except in two models, which share the same atmospheric component and show reduced convection. Simulated convection in the Labrador Sea is largely governed by the release of heat from the ocean to the atmosphere. Higher resolution models show stronger surface heat fluxes than the standard resolution models in the convection areas, which promotes the stronger convection in the Labrador Sea. In the Greenland Sea, the connection between high resolution and ocean heat release to the atmosphere is less robust and there is more variation across models in the relation between surface heat fluxes and convection. Simulated freshwater fluxes have less impact than surface heat fluxes on convection in both the Greenland and Labrador Sea and this result is insensitive to model resolution. is not robust across models. The mean strength of the Labrador Sea convection is important for the mean Atlantic Meridional Overturning Circulation (AMOC) and in around half of the models the variability of Labrador Sea convection is a significant contributor to the variability of the AMOC.


Author(s):  
Xiang-Yu Li ◽  
Hailong Wang ◽  
Jingyi Chen ◽  
Satoshi Endo ◽  
Geet George ◽  
...  

Abstract Large-eddy simulation (LES) is able to capture key boundary-layer (BL) turbulence and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat are often poorly prescribed for LES simulations. We derive these quantities from measurements and reanalysis obtained for two cold air outbreak (CAO) events during Phase I of the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) in February-March 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric state and large-scale divergence and surface turbulent heat fluxes obtained from the reanalysis data ERA5 agree reasonablywell with those derived fromACTIVATE field measurements for both cases at the sampling time and location. Therefore, we adopt the time evolving heat fluxes, wind and advective tendencies profiles from ERA5 reanalysis data to drive the LES.We find that large-scale thermodynamic advective tendencies and wind relaxations are important for the LES to capture the evolving observed BL meteorological states characterized by the hourly ERA5 reanalysis data and validated by the observations. We show that the divergence (or vertical velocity) is important in regulating the BL growth driven by surface heat fluxes in LES simulations. The evolution of liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves the path to investigate aerosol-cloud-meteorology interactions using LES informed and evaluated by ACTIVATE field measurements.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


2021 ◽  
Vol 149 (5) ◽  
pp. 1517-1534
Author(s):  
Benjamin Jaimes de la Cruz ◽  
Lynn K. Shay ◽  
Joshua B. Wadler ◽  
Johna E. Rudzin

AbstractSea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.


2010 ◽  
Vol 25 (2) ◽  
pp. 526-544 ◽  
Author(s):  
Carolyn A. Reynolds ◽  
James D. Doyle ◽  
Richard M. Hodur ◽  
Hao Jin

Abstract As part of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research’s (ONR’s) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). These SVs were optimized for fixed regions centered over Guam, Taiwan, Japan, and two regions over the North Pacific east of Japan. During high-interest periods, flow-dependent SVs were also produced. In addition, global ensemble forecasts were produced and were useful for examining the potential downstream impacts of extratropical transitions. For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPS-TC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest, at a 40-km horizontal resolution. These products were produced with 24-, 36-, and 48-h lead times. The nonhydrostatic adjoint system used during T-PARC/TCS-08 contains an exact adjoint to the explicit microphysics. An adaptive response function region was used to target favorable areas for tropical cyclone formation and development. Results indicate that forecasts of tropical cyclones in the western Pacific are very sensitive to the initial state.


2021 ◽  
Author(s):  
Efi Rousi ◽  
Kai Kornhuber ◽  
Goratz Beobide Arsuaga ◽  
Fei Luo ◽  
Dim Coumou

<p>Persistent summer extremes, such as heatwaves and droughts, can have considerable impacts on nature and societies. There is evidence that weather persistence has increased in Europe over the past decades, in association to changes in atmosphere dynamics, but uncertainties remain and the driving forces are not yet well understood. </p><p>Particularly for Europe, the jet stream may affect surface weather significantly by modulating the North Atlantic storm tracks. Here, we examine the hypothesis that high-latitude warming and decreased westerlies in summer result in more double jets, consisting of two distinct maxima of the zonal wind in the upper troposphere, over the Eurasian sector. Previous work has shown that such double jet states are related to persistent blocking-like circulation in the mid-latitudes. </p><p>We adapt a dynamical perspective of heat extreme trends by looking at large scale circulation and in particular, changes in the zonal mean zonal wind in different levels of the upper troposphere. We define clusters of jet states with the use of Self-Organizing Maps and analyze their characteristics. We find an increase in frequency and persistence of a cluster of double jet states for the period 1979-2019 during July-August (in ERA5 reanalysis data). Those states are linked to increased surface temperature and more frequent heatwaves compared to climatology over western, central, and northern Europe. Significant positive double jet anomalies are found to be dominant in the days preceding and/or coinciding with some of the most intense historical heatwaves in Europe, such as those of 2003 and 2018. A linear regression analysis shows that the increase in frequency and persistence of double jet states may explain part of the strong upward trend in heat extremes over these European regions.</p>


Sign in / Sign up

Export Citation Format

Share Document