Temporal-Spatial Variations of Atmospheric Static Stability: A Comparison of the Influences from Temperature and Its Vertical Difference

2021 ◽  
pp. 1-40
Author(s):  
Er Lu ◽  
Jiawei Hao ◽  
Kexin Yang

AbstractThe temporal-spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with the linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In stratosphere, temperature tends to have more contributions. Over Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.

2008 ◽  
Vol 54 (185) ◽  
pp. 315-323 ◽  
Author(s):  
Helgard Anschütz ◽  
Daniel Steinhage ◽  
Olaf Eisen ◽  
Hans Oerter ◽  
Martin Horwath ◽  
...  

AbstractSpatio-temporal variations of the recently determined accumulation rate are investigated using ground-penetrating radar (GPR) measurements and firn-core studies. The study area is located on Ritscherflya in western Dronning Maud Land, Antarctica, at an elevation range 1400–1560 m. Accumulation rates are derived from internal reflection horizons (IRHs), tracked with GPR, which are connected to a dated firn core. GPR-derived internal layer depths show small relief along a 22 km profile on an ice flowline. Average accumulation rates are about 190 kg m−2 a−1 (1980–2005) with spatial variability (1σ) of 5% along the GPR profile. The interannual variability obtained from four dated firn cores is one order of magnitude higher, showing 1σ standard deviations around 30%. Mean temporal variations of GPRderived accumulation rates are of the same magnitude or even higher than spatial variations. Temporal differences between 1980–90 and 1990–2005, obtained from two dated IRHs along the GPR profile, indicate temporally non-stationary processes, linked to spatial variations. Comparison with similarly obtained accumulation data from another coastal area in central Dronning Maud Land confirms this observation. Our results contribute to understanding spatio-temporal variations of the accumulation processes, necessary for the validation of satellite data (e.g. altimetry studies and gravity missions such as Gravity Recovery and Climate Experiment (GRACE)).


2005 ◽  
Vol 65 (1) ◽  
pp. 67-76 ◽  
Author(s):  
A. G Ferreira ◽  
A. L. S. Machado ◽  
I. R. Zalmon

Heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) concentrations were determined by ICP-AES in Ostrea equestris from three beaches (Barra do Furado, Buena, and Ponta do Retiro) on the northern coast of Rio de Janeiro State. The average concentration was 0.8 ± 0.18, 0.4 ± 0.21, 58 ± 25.6, 249 ± 52.3, 11 ± 1.31, 0.55 ± 0.16, 0.13 ± 0.11, and 1131 ± 321 µg.g-1 dry weight for Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn respectively. Significant spatial variation (p < 0.05) between the samples areas occurred for Cr, Pb, and Zn with higher values in Barra do Furado; and for Cu in Ponta do Retiro. Significant temporal variations (p < 0.05) were observed for all metals except Cu. Temporal variability may be related to changes in the inputs of metals associated with suspended particles. Concentrations were similar to those found in areas under low pollution impact, except for Zn, the high concentrations of which probably reflect the physiological characteristics of these organisms.


2021 ◽  
Author(s):  
Yafang Cheng ◽  
Guangjie Zheng ◽  
Hang Su ◽  
Siwen Wang ◽  
Andrea Pozzer

&lt;p&gt;Aerosol acidity is a key parameter in atmospheric aqueous chemistry and strongly influence the interactions of air pollutants and ecosystem. The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations of aerosol pH based on the effective acid dissociation constant of ammonia (K&lt;sub&gt;a,NH3&lt;/sub&gt;&lt;sup&gt;*&lt;/sup&gt;). However, non-ideality in aerosol droplets is a major challenge limiting its broad applications. Here, we introduced a non-ideality correction factor (c&lt;sub&gt;ni&lt;/sub&gt;) and investigated its governing factors. We found that besides relative humidity (RH) and temperature, c&lt;sub&gt;ni&lt;/sub&gt; is mainly determined by the molar fraction of NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; in aqueous-phase anions, due to different NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; activity coefficients between (NH&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;- and NH&lt;sub&gt;4&lt;/sub&gt;NO&lt;sub&gt;3&lt;/sub&gt;-dominated aerosols. A parameterization method is thus proposed to estimate c&lt;sub&gt;ni&lt;/sub&gt; at given RH, temperature and NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; fraction, and is validated against long-term observations and global simulations. In the ammonia-buffered regime, with c&lt;sub&gt;ni&lt;/sub&gt; correction the buffer theory can well reproduce the K&lt;sub&gt;a,NH3&lt;/sub&gt;&lt;sup&gt;*&lt;/sup&gt; predicted by comprehensive thermodynamic models, with root-mean-square deviation ~0.1 and correlation coefficient ~1. Note that, while c&lt;sub&gt;ni&lt;/sub&gt; is needed to predict K&lt;sub&gt;a,NH3&lt;/sub&gt;&lt;sup&gt;*&lt;/sup&gt; levels, it is usually not the dominant contributor to its variations, as ~90% of the temporal or spatial variations in K&lt;sub&gt;a,NH3&lt;/sub&gt;&lt;sup&gt;*&lt;/sup&gt; is due to variations in aerosol water and temperature.&lt;/p&gt;


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1037
Author(s):  
Siyang Cheng ◽  
Junli Jin ◽  
Jianzhong Ma ◽  
Xiaobin Xu ◽  
Liang Ran ◽  
...  

Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal variations of AE profiles, near-surface AE, and aerosol optical depth (AOD). The average AOD and near-surface AE over the period of study were 0.51 ± 0.26 and 0.33 ± 0.18 km−1 during the effective observation period, respectively. High AE events and elevated AE layers were identified based on the time series of hourly AE profiles, near-surface AEs and AODs. It is found that in addition to the planetary boundary layer height (PBLH) and relative humidity (RH), the variations in the wind field have large impacts on the near-surface AE, AOD, and AE profile. Among 16 wind sectors, higher AOD or AE occur mostly in the directions of the cities upstream. The diurnal variations of the AE profiles, AODs and near-surface AEs are significant and influenced mainly by the source emissions, PBLH, and RH. The AE profile shape from MAX-DOAS measurement is generally in agreement with that from light detection and ranging (lidar) observations, although the AE absolute levels are different. Overall, ground-based MAX-DOAS can serve as a supplement to measure the AE vertical profiles in the lower troposphere.


2014 ◽  
Vol 7 (9) ◽  
pp. 3127-3138 ◽  
Author(s):  
R. L. Herman ◽  
J. E. Cherry ◽  
J. Young ◽  
J. M. Welker ◽  
D. Noone ◽  
...  

Abstract. The EOS (Earth Observing System) Aura Tropospheric Emission Spectrometer (TES) retrieves the atmospheric HDO / H2O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES products. The field measurements were made with a commercially available Picarro L1115-i isotopic water analyzer on aircraft over the Alaskan interior boreal forest during the three summers of 2011 to 2013. TES special observations were utilized in these comparisons. The TES averaging kernels and a priori constraints have been applied to the in situ data, using version 5 (V005) of the TES data. TES calculated errors are compared with the standard deviation (1σ) of scan-to-scan variability to check consistency with the TES observation error. Spatial and temporal variations are assessed from the in situ aircraft measurements. It is found that the standard deviation of scan-to-scan variability of TES δD is ±34.1‰ in the boundary layer and ± 26.5‰ in the free troposphere. This scan-to-scan variability is consistent with the TES estimated error (observation error) of 10–18‰ after accounting for the atmospheric variations along the TES track of ±16‰ in the boundary layer, increasing to ±30‰ in the free troposphere observed by the aircraft in situ measurements. We estimate that TES V005 δD is biased high by an amount that decreases with pressure: approximately +123‰ at 1000 hPa, +98‰ in the boundary layer and +37‰ in the free troposphere. The uncertainty in this bias estimate is ±20‰. A correction for this bias has been applied to the TES HDO Lite Product data set. After bias correction, we show that TES has accurate sensitivity to water vapor isotopologues in the boundary layer.


2017 ◽  
Vol 74 (2) ◽  
pp. 513-530 ◽  
Author(s):  
John G. Dwyer ◽  
Paul A. O’Gorman

Abstract The Eliassen–Palm (EP) flux is an important diagnostic for wave propagation and wave–mean flow interaction in the atmosphere. Here, two moist formulations of the EP flux are compared with the traditional dry EP flux, and their links to the surface westerlies are analyzed using reanalysis data and simulations with GCMs. The first moist formulation of the EP flux modifies only the static stability to account for latent heat release by eddies, while the second moist formulation simply replaces all potential temperatures with equivalent potential temperatures. For reanalysis data, the peak upward EP flux in the lower troposphere is farther equatorward and stronger when the moist formulations are used, with greater changes for the second moist formulation. The moist formulations have the advantage of giving a closer relationship over the seasonal cycle between the latitudes of the peak surface westerlies and the peak upward EP flux. In simulations with a comprehensive GCM, the dry and moist upward EP fluxes shift poleward by a similar amount as the climate warms. In simulations over a wider range of climates with an idealized GCM, the surface westerlies can shift both poleward and equatorward with warming, and they are influenced by an anomalous region of dry EP flux divergence near the subtropical jet. Using moist EP fluxes weakens this anomalous divergence in the idealized GCM simulations, and the shifts in the surface westerlies can then be understood through changes in the preference for equatorward or poleward wave propagation.


2008 ◽  
Vol 47 (2) ◽  
pp. 397-410 ◽  
Author(s):  
M. Baldi ◽  
G. A. Dalu ◽  
R. A. Pielke

Abstract It is shown that landscape variability decreases the temperature in the surface layer when, through mesoscale flow, cool air intrudes over warm patches, lifting warm air and weakening the static stability of the upper part of the planetary boundary layer. This mechanism generates regions of upward vertical motion and a sizable amount of available potential energy and can make the environment of the lower troposphere more favorable to cloud formation. This process is enhanced by light ambient wind through the generation of trapped propagating waves, which penetrate into the midtropospheric levels, transporting upward the thermal perturbations and weakening the static stability around the top of the boundary layer. At moderate ambient wind speeds, the presence of surface roughness changes strengthens the wave activity, further favoring the vertical transport of the thermal perturbations. When the intensity of the ambient wind is larger than 5 m s−1, the vertical velocities induced by the surface roughness changes prevail over those induced by the diabatic flux changes. The analysis is performed using a linear theory in which the mesoscale dynamics are forced by the diurnal diabatic sensible heat flux and by the surface stress. Results are shown as a function of ambient flow intensity and of the wavelength of a sinusoidal landscape variability.


2017 ◽  
Vol 74 (5) ◽  
pp. 1445-1454 ◽  
Author(s):  
Huaji Pang ◽  
Gang Fu

AbstractThree cases of explosively developing extratropical cyclones over eastern Asia are analyzed using ERA-Interim data. The morphological characteristics of the upper-tropospheric potential vorticity (PV) were examined. The common feature of all of these three cases is a hook-shaped high-PV streamer wrapping counterclockwise around the center of surface cyclones on the southern and eastern sides and an arch-shaped low-PV tongue that wrapped the high-PV hook head from the north. The hook-shaped high-PV tongue overlaps with the maximum centers of both the relative vorticity and static stability parameter, indicating the stratospheric nature of the PV source inside the hook-shaped high-PV tongue.The analysis indicates that there existed a deep tower of high PV above the surface cyclone at the time when these cyclones underwent explosive cyclogenesis. The high PV in the upper troposphere originates from the polar stratospheric PV reservoir associated with the tropopause-folding process. The high PV in the lower troposphere, however, is associated with the latent heat release, as nearly 70%–90% of the high-PV values in the lower troposphere reside in the region where the rainfall is the heaviest.


2013 ◽  
Vol 6 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
W. W. Verstraeten ◽  
K. F. Boersma ◽  
J. Zörner ◽  
M. A. F. Allaart ◽  
K. W. Bowman ◽  
...  

Abstract. In this analysis, Tropospheric Emission Spectrometer (TES) V004 nadir ozone (O3) profiles are validated with more than 4400 coinciding ozonesonde measurements taken across the world from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) during the period 2005–2010. The TES observation operator was applied to the sonde data to ensure a consistent comparison between TES and ozonesonde data, i.e. without the influence of the a priori O3 profile needed to regulate the retrieval. Generally, TES V004 O3 retrievals are biased high by 2–7 ppbv (7–15%) in the troposphere, consistent with validation results from earlier studies. Because of two degrees of freedom for signal in the troposphere, we can distinguish between upper and lower troposphere mean biases, respectively ranging from −0.4 to +13.3 ppbv for the upper troposphere and +3.9 to +6.0 ppbv for the lower troposphere. Focusing on the 464 hPa retrieval level, broadly representative of the free tropospheric O3, we find differences in the TES biases for the tropics (+3 ppbv, +7%), sub-tropics (+5 ppbv, +11%), and northern (+7 ppbv, +13%) and southern mid-latitudes (+4 ppbv, +10%). The relatively long-term record (6 yr) of TES–ozonesonde comparisons allowed us to quantify temporal variations in TES biases at 464 hPa. We find that there are no discernable biases in each of these latitudinal bands; temporal variations in the bias are typically within the uncertainty of the difference between TES and ozonesondes. Establishing these bias patterns is important in order to make meaningful use of TES O3 data in applications such as model evaluation, trend analysis, or data assimilation.


Radiocarbon ◽  
2015 ◽  
Vol 57 (3) ◽  
pp. 363-375 ◽  
Author(s):  
Laura Beramendi-Orosco ◽  
Galia Gonzalez-Hernandez ◽  
Adriana Martinez-Jurado ◽  
Angeles Martinez-Reyes ◽  
Alfonso Garcia-Samano ◽  
...  

The Mexico City Metropolitan Area (MCMA) produces a complex mixture of gases and aerosols from diverse sources, including burning of fossil fuels, biomass, and wastes, with a significant biogenic contribution. We present the first results of ongoing projects to study temporal and spatial variations of 14CO2 in the area. Temporal variations reconstructed from tree rings of Taxodium mucronatum indicate a considerable radiocarbon depletion, in accordance to the vast amount of fossil fuels burnt inside Mexico Valley, with values between 62 and 246‰ lower than background values for the 1962–1968 period, and lower by 51–88‰ for the 1983–2010 period. The lower dilution found for the last decades might indicate an increase in enriched 14CO2 sources. Results from the spatial distribution, as revealed from integrated CO2 samples and grasses from six points within the MCMA collected during the 2013 dry season, show variations between sites and sample types. For integrated CO2 samples, values range from 35.6‰ to 54.0‰, and for grasses between −86.8‰ and 40.7‰. For three of the sampling points, the grasses are significantly depleted, by up to ∼133‰, as compared to the corresponding integrated CO2 sample. This may result from differences in the carbon assimilation period and exposure to different CO2 sources. Higher-than-background Δ14C values were found for all integrated CO2 samples, presumably resulting from 14C-enriched CO2 derived from forest fires in the mountains during the sampling period. Results obtained so far confirm the complexity of the 14C cycle in the MCMA.


Sign in / Sign up

Export Citation Format

Share Document