Enhanced Feedback between Shallow Convection and Low-level Moisture Convergence Leads to Improved Simulation of MJO Eastward Propagation

2021 ◽  
pp. 1-74
Author(s):  
Yan Liu ◽  
Zhe-Min Tan ◽  
Zhaohua Wu

AbstractRecent study indicates that the noninstantaneous interaction of convection and circulation is essential for evolution of large-scale convective systems. It is incorporated into cumulus parameterization (CP) by relating cloud-base mass flux of shallow convection to a composite of subcloud moisture convergence in the past 6 hours. Three pairs of 19-yr simulations with original and modified CP schemes are conducted in a tropical channel model to verify their ability to reproduce the Madden-Julian oscillation (MJO). More coherent tropical precipitation and improved eastward propagation signal are observed in the simulations with the modified CP schemes based on the noninstantaneous interaction. It is found that enhanced feedback between shallow convection and low-level moisture convergence results in amplified shallow convective heating, and then generates reinforced moisture convergence which transports more moisture upward. The improved simulations of eastward propagation of the MJO are largely attributed to higher specific humidity below 600 hPa in the free troposphere to the east of maximum rainfall center, which is related to stronger boundary layer moisture convergence forced by shallow convection. Large-scale horizontal advection causes asymmetric moisture tendencies relative to rainfall center (positive to the east and negative to the west) and also gives rise to eastward propagation. The zonal advection, especially the advection of anomalous specific humidity by mean zonal wind, is found to dominate the difference of horizontal advection between each pair of simulations. The results indicate the vital importance of noninstantaneous feedback between shallow convection and moisture convergence for convection organization and the eastward propagation of MJO.

2020 ◽  
Vol 77 (9) ◽  
pp. 3119-3137
Author(s):  
Marcin J. Kurowski ◽  
Wojciech W. Grabowski ◽  
Kay Suselj ◽  
João Teixeira

Abstract Idealized large-eddy simulation (LES) is a basic tool for studying three-dimensional turbulence in the planetary boundary layer. LES is capable of providing benchmark solutions for parameterization development efforts. However, real small-scale atmospheric flows develop in heterogeneous and transient environments with locally varying vertical motions inherent to open multiscale interactive dynamical systems. These variations are often too subtle to detect them by state-of-the-art remote and in situ measurements, and are typically excluded from idealized simulations. The present study addresses the impact of weak [i.e., O(10−6) s−1] short-lived low-level large-scale convergence/divergence perturbations on continental shallow convection. The results show a strong response of shallow nonprecipitating convection to the applied weak large-scale dynamical forcing. Evolutions of CAPE, mean liquid water path, and cloud-top heights are significantly affected by the imposed convergence/divergence. In contrast, evolving cloud-base properties, such as the area coverage and mass flux, are only weakly affected. To contrast those impacts with microphysical sensitivity, the baseline simulations are perturbed assuming different observationally based cloud droplet number concentrations and thus different rainfall. For the tested range of microphysical perturbations, the imposed convergence/divergence provides significantly larger impact than changes in the cloud microphysics. Simulation results presented here provide a stringent test for convection parameterizations, especially important for large-scale models progressing toward resolving some nonhydrostatic effects.


2012 ◽  
Vol 25 (1) ◽  
pp. 392-413 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Jenq-Dar Tsay ◽  
Ming-Cheng Yen ◽  
Jun Matsumoto

Abstract The heavy rainfall/flood (HRF) event in central Vietnam usually occurs in October–November, the maximum rainfall season. This rainfall maximum undergoes a distinct interannual variation, opposite the interannual variation of sea surface temperature (SST) anomalies averaged over the NOAA Niño-3.4 area—ΔSST(Niño-3.4)—but coincident with the intensification (weakening) of the low-level easterlies at 15°N and westerlies at 5°N. The changes of low-level zonal winds reflect the strengthening (weakening) of the tropical cyclonic shear flow in tropical South/Southeast Asia in response to the tropical Pacific SST anomalies. Because the rainfall maximum in central Vietnam is primarily produced by the HRF cyclone, the interannual rainfall variation in this region should be attributed to the HRF cyclone activity—a new perspective of the climate change in precipitation. On average, one HRF cyclone occurs in each cold late fall. The population of the HRF cyclone may not be an important factor causing the interannual rainfall variation in central Vietnam. During the cold late fall, the rain-producing efficiency of the individual HRF cyclone is statistically almost twice those during warm and normal late falls and the most crucial factor leading to the interannual rainfall variation in central Vietnam. It is shown by further hydrological analysis that the increase (decrease) of the HRF cyclone’s rain-producing efficiency is determined by the large-scale environmental flow through the enhancement (weakening) of the regional convergence of water vapor flux.


Author(s):  
Marcus Klingebiel ◽  
Heike Konow ◽  
Bjorn Stevens

AbstractMass flux is a key quantity in parameterizations of shallow convection. To estimate the shallow convective mass flux as accurately as possible, and to test these parameterizations, observations of this parameter are necessary. In this study, we show how much the mass flux varies and how this can be used to test factors that may be responsible for its variation. Therefore, we analyze long term Doppler radar and Doppler lidar measurements at the Barbados Cloud Observatory over a time period of 30 months, which results in a mean mass flux profile with a peak value of 0.03 kg m−2 s−1 at an altitude of ~730 m, similar to observations from Ghate et al. (2011) at the Azores Islands. By combining Doppler radar and Doppler lidar measurements, we find that the cloud base mass flux depends mainly on the cloud fraction and refutes an idea based on large eddy simulations, that the velocity scale is in major control of the shallow cumulus mass flux. This indicates that the large scale conditions might play a more important role than what one would deduce from simulations using prescribed large-scale forcings.


2018 ◽  
Vol 18 (19) ◽  
pp. 14253-14269 ◽  
Author(s):  
Christopher Dearden ◽  
Adrian Hill ◽  
Hugh Coe ◽  
Tom Choularton

Abstract. Large-eddy simulations are performed to investigate the influence of cloud microphysics on the evolution of low-level clouds that form over southern West Africa during the monsoon season. We find that, even in clouds that are not precipitating, the size of cloud droplets has a non-negligible effect on liquid water path. This is explained through the effects of droplet sedimentation, which acts to remove liquid water from the entrainment zone close to cloud top, increasing the liquid water path. Sedimentation also produces a more heterogeneous cloud structure and lowers cloud base height. Our results imply that an appropriate parameterization of the effects of sedimentation is required to improve the representation of the diurnal cycle of the atmospheric boundary layer over southern West Africa in large-scale models.


2020 ◽  
Vol 77 (8) ◽  
pp. 2847-2863 ◽  
Author(s):  
Pornampai Narenpitak ◽  
Christopher S. Bretherton ◽  
Marat F. Khairoutdinov

Abstract Tropical cyclogenesis (TCG) is a multiscale process that involves interactions between large-scale circulation and small-scale convection. A near-global aquaplanet cloud-resolving model (NGAqua) with 4-km horizontal grid spacing that produces tropical cyclones (TCs) is used to investigate TCG and its predictability. This study analyzes an ensemble of three 20-day NGAqua simulations, with initial white-noise perturbations of low-level humidity. TCs develop spontaneously from the northern edge of the intertropical convergence zone (ITCZ), where large-scale flows and tropical convection provide necessary conditions for barotropic instability. Zonal bands of positive low-level absolute vorticity organize into cyclonic vortices, some of which develop into TCs. A new algorithm is developed to track the cyclonic vortices. A vortex-following framework analysis of the low-level vorticity budget shows that vertical stretching of absolute vorticity due to convective heating contributes positively to the vorticity spinup of the TCs. A case study and composite analyses suggest that sufficient humidity is key for convective development. TCG in these three NGAqua simulations undergoes the same series of interactions. The locations of cyclonic vortices are broadly predetermined by planetary-scale circulation and humidity patterns associated with ITCZ breakdown, which are predictable up to 10 days. Whether and when the cyclonic vortices become TCs depend on the somewhat more random feedback between convection and vorticity.


Author(s):  
Parthasarathi Mukhopadhyay ◽  
Peter Bechtold ◽  
Yuejian Zhu ◽  
R. Phani Murali Krishna ◽  
Siddharth Kumar ◽  
...  

AbstractDuring August 2018 and 2019 the southern state of India, Kerala received unprecedented heavy rainfall which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state of the art global prediction systems, the National Centre for Environmental Prediction (NCEP) based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium Range Weather Forecast (ECMWF) integrated forecast system (IFS) and the Unified Model based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF).Satellite, radar and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range, sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the ERA5 (ECMWF Reanalyses version 5) reanalyses and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column integrated precipitable water tendency, however is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019.Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skilful than the deterministic forecasts, as they were able to predict rainfall anomalies (>3 standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.


2016 ◽  
Vol 29 (19) ◽  
pp. 7127-7143 ◽  
Author(s):  
Sun Wong ◽  
Anthony D. Del Genio ◽  
Tao Wang ◽  
Brian H. Kahn ◽  
Eric J. Fetzer ◽  
...  

Abstract An atmospheric-water-budget-related phase space is constructed with the tendency terms related to dynamical convergence (QCON ≡ −Q∇ ⋅ V) and moisture advection (QADV ≡ −V ⋅ ∇Q) in the water budget equation. Over the tropical oceans, QCON accounts for large-scale dynamical conditions related to conditional instability, and QADV accounts for conditions related to lower-tropospheric moisture gradient. Two reanalysis products [MERRA and ERA-Interim (ERAi)] are used to calculate QCON and QADV. Using the phase space as a reference frame, the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure (CTP) and cloud optical depth (COD) are used to evaluate simulated clouds in the GISS-E2 general circulation model. In regimes of divergence over the tropical oceans, moist advection yields frequent high- to midlevel medium-thickness to thick clouds associated with moderate stratiform precipitation, while dry advection yields low-level thin clouds associated with shallow convection with lowered cloud tops. In regimes with convergence, moist and dry advection modulate the relative abundance of high-level thick clouds and low-level thin to medium-thickness clouds. GISS-E2 qualitatively reproduces the cloud property dependence on moisture budget tendencies in regimes of convergence but with larger COD compared to MODIS. Low-level thick clouds in GISS-E2 are the most frequent in regimes of near-zero convergence and moist advection instead of those of large-scale divergence. Compared to the Global Precipitation Climatology Project product, MERRA, ERAi, and GISS-E2 have more rain in regimes with deep convection and less rain in regimes with shallow convection.


2012 ◽  
Vol 69 (8) ◽  
pp. 2364-2378 ◽  
Author(s):  
Guanghua Chen

Abstract The differences in the transitions of equatorial mixed Rossby–gravity (MRG) waves to off-equatorial tropical depression (TD)-type disturbances during ENSO events are investigated with a global baroclinic anomaly model. The model reproduces reasonably the perturbation evolution within realistic three-dimensional summer mean states corresponding to El Niño (EN) and La Niña (LN) years. Based on wave structure and energetics diagnosis, the results indicate that, following the longitudinal shift of the favorable environmental fields, the wave characteristics are altered accordingly. In the presence of a circulation–convection feedback, the wave train exhibits more rapid growth, a more eastern location of transition, and a more northward-shifting component during EN years than during LN years. The convective heating acts as a leading energy source to supply the wave growth and the increase in eddy kinetic energy is directly attributed to barotropic conversion in the monsoon region. Sensitivity experiments show that the dynamic effect alone fails to capture the observed wave behaviors although the damped modes also experience a scale contraction and a slight northward migration. The near-surface thermodynamic fields related to sea surface temperature (SST) and low-level specific humidity can play a crucial role in the scale contraction and the propagation characteristics for tropical synoptic waves. The heating feedback scheme combining the actions of SST and low-level moisture can amplify and accelerate the modification of wave characteristics initiated by the dynamic effect, producing a tighter wave structure and steering the wave train toward the warmer and moister ocean.


2022 ◽  
Author(s):  
Yanjun Qi ◽  
Renhe Zhang ◽  
Zhuo Wang

Abstract A severe flooding hit southern China along the Yangtze River in summer 2020. The floods were induced by heavy rains, and the associated dynamic and thermodynamic conditions are investigated using daily gridded rainfall data of China and NCEP-NCAR reanalysis. It is found that the summer rainfall over the Yangtze River Basin (YRB) experienced pronounced subseasonal variation in 2020, dominated by a quasi-biweekly oscillation (QBWO) mode. The southwestward-moving anomalous QBWO circulation was essentially the fluctuation of cold air mass related to the tropospheric polar vortex or trough-ridge activities over the mid-high latitude Eurasian in boreal summer. The large-scale southwestward-transport of cold air mass from mid-high latitudes and the northeastward-transport of warm and moist air by the strong anomalous anticyclone over the western North Pacific provided important circulation support for the heavy rainfall in the YRB. The quasi-biweekly anomalies of potential and divergent component of vertically integrated water vapor flux played a major role in maintaining the moisture during summer 2020. The diagnosis of moisture budget shows that the enhanced moisture associated with the quasi-biweekly fluctuation rainfall was primarily attributed to the moisture convergence. The convergence of QBWO specific humidity by the background mean flow and convergence of mean specific humidity by QBWO flow played dominant roles in contributing to the positive moisture tendency. In combination with an adiabatic ascent induced by the warm temperature advection, the boundary layer moisture convergence strengthens the upward transport of moisture from lower troposphere. The vertical moisture transport associated with boundary layer convergence was of critical importance in causing low-level tropospheric moistening, whereas the horizontal advection of moisture showed a negative effect during the anomalous quasi-biweekly summer rainfall in 2020.


2014 ◽  
Vol 71 (11) ◽  
pp. 3881-3901 ◽  
Author(s):  
Fabio D’Andrea ◽  
Pierre Gentine ◽  
Alan K. Betts ◽  
Benjamin R. Lintner

Abstract A model unifying the representation of the planetary boundary layer and dry, shallow, and deep convection, the probabilistic plume model (PPM), is presented. Its capacity to reproduce the triggering of deep convection over land is analyzed in detail. The model accurately reproduces the timing of shallow convection and of deep convection onset over land, which is a major issue in many current general climate models. PPM is based on a distribution of plumes with varying thermodynamic states (potential temperature and specific humidity) induced by surface-layer turbulence. Precipitation is computed by a simple ice microphysics, and with the onset of precipitation, downdrafts are initiated and lateral entrainment of environmental air into updrafts is reduced. The most buoyant updrafts are responsible for the triggering of moist convection, causing the rapid growth of clouds and precipitation. Organization of turbulence in the subcloud layer is induced by unsaturated downdrafts, and the effect of density currents is modeled through a reduction of the lateral entrainment. The reduction of entrainment induces further development from the precipitating congestus phase to full deep cumulonimbus. Model validation is performed by comparing cloud base, cloud-top heights, timing of precipitation, and environmental profiles against cloud-resolving models and large-eddy simulations for two test cases. These comparisons demonstrate that PPM triggers deep convection at the proper time in the diurnal cycle and produces reasonable precipitation. On the other hand, PPM underestimates cloud-top height.


Sign in / Sign up

Export Citation Format

Share Document