scholarly journals Climate Change Detection and Attribution: Beyond Mean Temperature Signals

2006 ◽  
Vol 19 (20) ◽  
pp. 5058-5077 ◽  
Author(s):  
Gabriele C. Hegerl ◽  
Thomas R. Karl ◽  
Myles Allen ◽  
Nathaniel L. Bindoff ◽  
Nathan Gillett ◽  
...  

Abstract A significant influence of anthropogenic forcing has been detected in global- and continental-scale surface temperature, temperature of the free atmosphere, and global ocean heat uptake. This paper reviews outstanding issues in the detection of climate change and attribution to causes. The detection of changes in variables other than temperature, on regional scales and in climate extremes, is important for evaluating model simulations of changes in societally relevant scales and variables. For example, sea level pressure changes are detectable but are significantly stronger in observations than the changes simulated in climate models, raising questions about simulated changes in climate dynamics. Application of detection and attribution methods to ocean data focusing not only on heat storage but also on the penetration of the anthropogenic signal into the ocean interior, and its effect on global water masses, helps to increase confidence in simulated large-scale changes in the ocean. To evaluate climate change signals with smaller spatial and temporal scales, improved and more densely sampled data are needed in both the atmosphere and ocean. Also, the problem of how model-simulated climate extremes can be compared to station-based observations needs to be addressed.

Author(s):  
Valerio Lembo ◽  
Valerio Lucarini ◽  
Francesco Ragone

<p>Global Climate Models are key tools for predicting the future response of the climate system to a variety of natural and anthropogenic forcings. Typically, an ensemble of simulations is performed considering a scenario of forcing, in order to analyse the response of the climate system to the specific forcing signal. Given that the the climate response spans a very large range of timescales, such a strategy often requires a dramatic amount of computational resources. In this paper we show how to use statistical mechanics to construct operators able to flexibly predict climate change for a variety of climatic variables of interest, going beyond the limitation of having to consider specific time patterns of forcing. We perform our study on a fully coupled GCM - MPI-ESM v.1.2 - and for the first time we prove the effectiveness of response theory in predicting future climate response to CO<sub>2</sub> increase on a vast range of temporal scales. We specifically treat atmospheric  (surface temperature) and oceanic variables (strength of the Atlantic Meridional Overturning Circulation and of the Antarctic Circumpolar Current), as well as the global ocean heat uptake.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.


2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


2020 ◽  
Vol 33 (19) ◽  
pp. 8315-8337 ◽  
Author(s):  
Lawrence S. Jackson ◽  
Declan L. Finney ◽  
Elizabeth J. Kendon ◽  
John H. Marsham ◽  
Douglas J. Parker ◽  
...  

AbstractThe Hadley circulation and tropical rain belt are dominant features of African climate. Moist convection provides ascent within the rain belt, but must be parameterized in climate models, limiting predictions. Here, we use a pan-African convection-permitting model (CPM), alongside a parameterized convection model (PCM), to analyze how explicit convection affects the rain belt under climate change. Regarding changes in mean climate, both models project an increase in total column water (TCW), a widespread increase in rainfall, and slowdown of subtropical descent. Regional climate changes are similar for annual mean rainfall but regional changes of ascent typically strengthen less or weaken more in the CPM. Over a land-only meridional transect of the rain belt, the CPM mean rainfall increases less than in the PCM (5% vs 14%) but mean vertical velocity at 500 hPa weakens more (17% vs 10%). These changes mask more fundamental changes in underlying distributions. The decrease in 3-hourly rain frequency and shift from lighter to heavier rainfall are more pronounced in the CPM and accompanied by a shift from weak to strong updrafts with the enhancement of heavy rainfall largely due to these dynamic changes. The CPM has stronger coupling between intense rainfall and higher TCW. This yields a greater increase in rainfall contribution from events with greater TCW, with more rainfall for a given large-scale ascent, and so favors slowing of that ascent. These findings highlight connections between the convective-scale and larger-scale flows and emphasize that limitations of parameterized convection have major implications for planning adaptation to climate change.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>


2020 ◽  
Vol 33 (24) ◽  
pp. 10579-10591
Author(s):  
Elodie Charles ◽  
Benoit Meyssignac ◽  
Aurélien Ribes

AbstractObservations and climate models are combined to identify an anthropogenic warming signature in the upper ocean heat content (OHC) changes since 1971. We apply a new detection and attribution analysis developed by Ribes et al. that uses a symmetric treatment of the magnitude and the pattern of the climate response to each radiative forcing. A first estimate of the OHC response to natural, anthropogenic, greenhouse gas, and other forcings is derived from a large ensemble of CMIP5 simulations. Observational datasets from historical reconstructions are then used to constrain this estimate. A spatiotemporal observational mask is applied to compare simulations with actual observations and to overcome reconstruction biases. Results on the 0–700-m layer from 1971 to 2005 show that the global OHC would have increased since 1971 by 2.12 ± 0.21 × 107 J m−2 yr−1 in response to GHG emissions alone. But this has been compensated for by other anthropogenic influences (mainly aerosol), which induced an OHC decrease of 0.84 ± 0.18 × 107 J m−2 yr−1. The natural forcing has induced a slight global OHC decrease since 1971 of 0.13 ± 0.09 × 107 J m−2 yr−1. Compared to previous studies we have separated the effect of the GHG forcing from the effect of the other anthropogenic forcing on OHC changes. This has been possible by using a new detection and attribution (D&A) method and by analyzing simultaneously the global OHC trends over 1957–80 and over 1971–2005. This bivariate method takes advantage of the different time variation of the GHG forcing and the aerosol forcing since 1957 to separate both effects and reduce the uncertainty in their estimates.


Sign in / Sign up

Export Citation Format

Share Document