scholarly journals Land cover drives large scale productivity-diversity relationships in Irish vascular plants

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7035 ◽  
Author(s):  
Hannah J. White ◽  
Willson Gaul ◽  
Dinara Sadykova ◽  
Lupe León-Sánchez ◽  
Paul Caplat ◽  
...  

The impact of productivity on species diversity is often studied at small spatial scales and without taking additional environmental factors into account. Focusing on small spatial scales removes important regional scale effects, such as the role of land cover heterogeneity. Here, we use a regional spatial scale (10 km square) to establish the relationship between productivity and vascular plant species richness across the island of Ireland that takes into account variation in land cover. We used generalized additive mixed effects models to relate species richness, estimated from biological records, to plant productivity. Productivity was quantified by the satellite-derived enhanced vegetation index. The productivity-diversity relationship was fitted for three land cover types: pasture-dominated, heterogeneous, and non-pasture-dominated landscapes. We find that species richness decreases with increasing productivity, especially at higher productivity levels. This decreasing relationship appears to be driven by pasture-dominated areas. The relationship between species richness and heterogeneity in productivity (both spatial and temporal) varies with land cover. Our results suggest that the impact of pasture on species richness extends beyond field level. The effect of human modified landscapes, therefore, is important to consider when investigating classical ecological relationships, particularly at the wider landscape scale.

2019 ◽  
Vol 11 (19) ◽  
pp. 2201 ◽  
Author(s):  
Stanimirova ◽  
Cai ◽  
Melaas ◽  
Gray ◽  
Eklundh ◽  
...  

Observations of vegetation phenology at regional-to-global scales provide important information regarding seasonal variation in the fluxes of energy, carbon, and water between the biosphere and the atmosphere. Numerous algorithms have been developed to estimate phenological transition dates using time series of remotely sensed spectral vegetation indices. A key challenge, however, is that different algorithms provide inconsistent results. This study provides a comprehensive comparison of start of season (SOS) and end of season (EOS) phenological transition dates estimated from 500 m MODIS data based on two widely used sources of such data: the TIMESAT program and the MODIS Global Land Cover Dynamics (MLCD) product. Specifically, we evaluate the impact of land cover class, criteria used to identify SOS and EOS, and fitting algorithm (local versus global) on the transition dates estimated from time series of MODIS enhanced vegetation index (EVI). Satellite-derived transition dates from each source are compared against each other and against SOS and EOS dates estimated from PhenoCams distributed across the Northeastern United States and Canada. Our results show that TIMESAT and MLCD SOS transition dates are generally highly correlated (r = 0.51-0.97), except in Central Canada where correlation coefficients are as low as 0.25. Relative to SOS, EOS comparison shows lower agreement and higher magnitude of deviations. SOS and EOS dates are impacted by noise arising from snow and cloud contamination, and there is low agreement among results from TIMESAT, the MLCD product, and PhenoCams in vegetation types with low seasonal EVI amplitude or with irregular EVI time series. In deciduous forests, SOS dates from the MLCD product and TIMESAT agree closely with SOS dates from PhenoCams, with correlations as high as 0.76. Overall, our results suggest that TIMESAT is well-suited for local-to-regional scale studies because of its ability to tune algorithm parameters, which makes it more flexible than the MLCD product. At large spatial scales, where local tuning is not feasible, the MLCD product provides a readily available data set based on a globally consistent approach that provides SOS and EOS dates that are comparable to results from TIMESAT.


2018 ◽  
Vol 5 (9) ◽  
pp. 181168 ◽  
Author(s):  
Rachakonda Sreekar ◽  
Masatoshi Katabuchi ◽  
Akihiro Nakamura ◽  
Richard T. Corlett ◽  
J. W. Ferry Slik ◽  
...  

The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3–30 o ) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.


2006 ◽  
Vol 19 (21) ◽  
pp. 5554-5569 ◽  
Author(s):  
P. Good ◽  
J. Lowe

Abstract Aspects of model emergent behavior and uncertainty in regional- and small-scale effects of increasing CO2 on seasonal (June–August) precipitation are explored. Nineteen different climate models are studied. New methods of comparing multiple climate models reveal a clearer and more impact-relevant view of precipitation projections for the current century. First, the importance of small spatial scales in multimodel projections is demonstrated. Local trends can be much larger than or even have an opposing sign to the large-scale regional averages used in previous studies. Small-scale effects of increasing CO2 and natural internal variability both play important roles here. These small-scale features make multimodel comparisons difficult for precipitation. New methods that allow information from small spatial scales to be usefully compared across an ensemble of multiple models are presented. The analysis philosophy of this study works with statistical distributions of small-scale variations within climatological regions. A major result of this work is a set of emergent relationships coupling the small- and regional-scale effects of CO2 on precipitation trends. Within each region, a single relationship fits the ensemble of 19 different climate models. Using these relationships, a surprisingly large part of the intermodel variance in small-scale effects of CO2 is explainable simply by the intermodel variance in the regional mean (a form of pattern scaling). Different regions show distinctly different relationships. These relationships imply that regional mean results are still useful, as long as the interregional variation in their relationship with impact-relevant extreme trends is recognized. These relationships are used to present a clear but rich picture of an aspect of model uncertainty, characterized by the intermodel spread in seasonal precipitation trends, including information from small spatial scales.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 171 ◽  
Author(s):  
Meng Wang ◽  
Junxiang Li ◽  
Shengjian Kuang ◽  
Yujuan He ◽  
Guojian Chen ◽  
...  

Urbanization is one of the major causes for plant diversity loss at the local and regional scale. However, how plant species distribute along the urban–rural gradient and what the relationship between urbanization degree and plant diversity is, is not very clear. In this paper, 134 sample sites along two 18 km width transects that run across the urban center of Shanghai were investigated. We quantified the spatial patterns of plant diversity along the urban–rural gradient and measured the relationship between plant diversity and urbanization degree, which was calculated using a land use land cover map derived from high spatial resolution aerial photos. We recorded 526 vascular plant species in 134 plots, 57.8% of which are exotic plant species. Six spatial distribution patterns of species richness were identified for different plant taxa along the rural to urban gradient. The native plant species richness showed no significant relationship to urbanization degree. The richness of the all plants, woody plants and perennial herbs presented significant positive relationship with urbanization degree, while the richness of annual herbs, Shannon-Wiener diversity and Heip evenness all exhibited a negative relationship to urbanization degree. Urbanization could significantly influence plant diversity in Shanghai. Our findings can provide insights to understand the mechanism of urbanization effects on plant diversity, as well as plant diversity conservation in urban areas.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1206 ◽  
Author(s):  
Nguyen Truong ◽  
Hong Nguyen ◽  
Akihiko Kondoh

The upstream Dong Nai River Basin is located in the country’s key economic development region and its water resources are a key component of sustainable regional development. The objective of this study was to assess the impact of land use and land cover changes (LULCC) on the flow regime in this tropical forest basin using a flow–duration curve analysis that has been widely used in Japan. This study combined two different temporal and spatial scales of satellite data, Landsat and Global Inventory Modeling, and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) to analyze LUCC. Results from the land cover classification of five Landsat images between 1973 and 2014 indicated that the forest area decreased significantly in the period of 1994 to 2005 due to population growth, leading to land conversion for agriculture. Furthermore, secular changes in the annual GIMMS-NDVI data revealed that land cover changes occurred from 1996 and a large amount of forest was lost in 1999; however, due to the rapid regrowth of secondary forest of tropical forests and the development of the crop, the vegetation recovered shortly afterwards in 2000 before decreasing again after 2004. Following large-scale deforestation, the total discharge, maximum flow, and the plentiful, ordinary, low, and small-scale runoff increased sharply and decreased thereafter because of vegetation regrowth.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
George Kazakis ◽  
Dany Ghosn ◽  
Ilektra Remoundou ◽  
Panagiotis Nyktas ◽  
Michael A. Talias ◽  
...  

High mountain zones in the Mediterranean area are considered more vulnerable in comparison to lower altitudes zones. Lefka Ori massif, a global biodiversity hotspot on the island of Crete is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring network. The paper examines species and vegetation changes with respect to climate and altitude over a seven-year period (2001–2008) at a range of spatial scales (10 m Summit Area Section-SAS, 5 m SAS, 1 m2) using the GLORIA protocol in a re-survey of four mountain summits (1664 m–2339 m). The absolute species loss between 2001–2008 was 4, among which were 2 endemics. At the scale of individual summits, the highest changes were recorded at the lower summits with absolute species loss 4 in both cases. Paired t-tests for the total species richness at 1 m2 between 2001–2008, showed no significant differences. No significant differences were found at the individual summit level neither at the 5 m SAS or the 10 m SAS. Time series analysis reveals that soil mean annual temperature is increasing at all summits. Linear regressions with the climatic variables show a positive effect on species richness at the 5 m and 10 m SAS as well as species changes at the 5 m SAS. In particular, June mean temperature has the highest predictive power for species changes at the 5 m SAS. Recorded changes in species richness point more towards fluctuations within a plant community’s normal range, although there seem to be more significant diversity changes in higher summits related to aspects. Our work provides additional evidence to assess the effects of climate change on plant diversity in Mediterranean mountains and particularly those of islands which remain understudied.


2018 ◽  
Vol 31 ◽  
pp. 131-160 ◽  
Author(s):  
Michel Reddé

In a series of studies about settlement density in the Rhine area from protohistoric to modern times, K.-P. Wendt and A. Zimmermann try their hand at the difficult task of evaluating the palaeodemography of a region. Their task is all the more complex because these are times and spaces for which written sources are lacking, as a result of which reasoning relies very broadly on interpretation of the archaeological record. The two researchers also attempt to characterize the density of rural settlements and their spatial distribution. I shall not dally on the methods employed, which involve quite complex statistics and geomatics (anyway, they lie outside my area of scientific competence), and shall take the figures at face value, even if I might question some of them. I shall contemplate the economic impact of population growth on the countryside of Gaul in Imperial times. It is a subject that has often been addressed, but one which I intend to reconsider in the context of a European programme on this issue. The relationship between population numbers, agricultural yield, gross domestic product and taxation has certainly been one key to our understanding of the Roman economy ever since the model suggested by K. Hopkins. Here, however, I do not wish to proceed in terms of theory, but intend to review critically the archaeological sources, which, for want of written evidence, are our mainspring for evaluating the key components of economic development on the regional scale of NE Gaul.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


2018 ◽  
Vol 15 (13) ◽  
pp. 4245-4269 ◽  
Author(s):  
Rebecca J. Oliver ◽  
Lina M. Mercado ◽  
Stephen Sitch ◽  
David Simpson ◽  
Belinda E. Medlyn ◽  
...  

Abstract. The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.


Author(s):  
Stepan Dankevych

The problem of ensuring the balanced use of forest lands determines the search for new economic and environmental tools that can influence this process. The need to improve the certification tool as part of the financial and economic mechanism for ensuring balanced forestry land use corresponds to the directions of state policy and European integration intentions of Ukraine, modern requirements of the ecological aspect of forestry land use. The work examines the practice in the field of forest certification in Ukraine from the point of view of balanced land use. Spatial-temporal analysis and assessment of the scale and dynamics of the spread of forest FSC certification in Ukraine has been carried out. The study was formed in three stages: (I) study of changes over time in the volume of forest certification on a national scale, (II) assessment of trends over time for indicators on a regional scale, (III) study of the relationship between individual indicators. The analysis of the impact of FSC-certification of forest management in Ukraine on the environmental indicators of forestry land use based on the results of the correlation between the statistical characteristics of certain economic and environmental indicators, such as the area of certified forests, capital investments, reforestation. Analysis of statistical data showed the relationship between environmental and economic performance over time and changes in specific characteristics on a regional scale. The study makes it possible, on the basis of an objectively existing causal relationship between phenomena and indicators, to identify the course of certain positive or negative processes in forestry land use. Forest certification can play a role in maintaining a balanced use of forest lands, preventing illegal logging, forest degradation and contributing to reforestation and capital investments. The study helps to identify certain key variables that limit the ability of forestry operators to ensure balanced use of forest lands and how forest certification can affect this. Foreign experience in stimulating forest certification has been investigated for the possibility of borrowing the experience of using management tools in order to motivate forest certification in Ukraine. It has been proven that certification is a significant environmental tool for ensuring a balanced level of land use and has the potential for further development.


Sign in / Sign up

Export Citation Format

Share Document