scholarly journals Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics*

2007 ◽  
Vol 20 (11) ◽  
pp. 2623-2642 ◽  
Author(s):  
Roel A. J. Neggers ◽  
J. David Neelin ◽  
Bjorn Stevens

Abstract Subtropical shallow cumulus convection is shown to play an important role in tropical climate dynamics, in which convective mixing between the atmospheric boundary layer and the free troposphere initiates a chain of large-scale feedbacks. It is found that the presence of shallow convection in the subtropics helps set the width and intensity of oceanic ITCZs, a mechanism here termed the shallow cumulus humidity throttle because of the control exerted on the moisture supply to the deep convection zones. These conclusions are reached after investigations based on a tropical climate model of intermediate complexity, with sufficient vertical degrees of freedom to capture (i) the effects of shallow convection on the boundary layer moisture budget and (ii) the dependency of deep convection on the free-tropospheric humidity. An explicit shallow cumulus mixing time scale in this simple parameterization is varied to assess sensitivity, with moist static energy budget analysis aiding to identify how the local effect of shallow convection is balanced globally. A reduction in the mixing efficiency of shallow convection leads to a more humid atmospheric mixed layer, and less surface evaporation, with a drier free troposphere outside of the convecting zones. Advection of drier free-tropospheric air from the subtropics by transients such as dry intrusions, as well as by mean inflow, causes a substantial narrowing of the convection zones by inhibition of deep convection at their margins. In the tropical mean, the reduction of convection by this narrowing more than compensates for the reduction in surface evaporation. Balance is established via a substantial decrease in tropospheric temperatures throughout the Tropics, associated with the reduction in convective heating. The temperature response—and associated radiative contribution to the net flux into the column—have broad spatial scales, while the reduction of surface evaporation is concentrated outside of the convecting zones. This results in differential net flux across the convecting zone, in a sense that acts to destabilize those areas that do convect. This results in stronger large-scale convergence and more intense convection within a narrower area. Finally, mixed layer ocean experiments show that in a coupled ocean–atmosphere system this indirect feedback mechanism can lead to SST differences up to +2 K between cases with different shallow cumulus mixing time, tending to counteract the direct radiative impact of low subtropical clouds on SST.

2010 ◽  
Vol 67 (7) ◽  
pp. 2212-2225 ◽  
Author(s):  
Jennifer K. Fletcher ◽  
Christopher S. Bretherton

Abstract High-resolution three-dimensional cloud resolving model simulations of deep cumulus convection under a wide range of large-scale forcings are used to evaluate a mass flux closure based on boundary layer convective inhibition (CIN) that has previously been applied in parameterizations of shallow cumulus convection. With minor modifications, it is also found to perform well for deep oceanic and continental cumulus convection, and it matches simulated cloud-base mass flux much better than a closure based only on the boundary layer convective velocity scale. CIN closure maintains an important feedback among cumulus base mass flux, compensating subsidence, and CIN that keeps the boundary layer top close to cloud base. For deep convection, the proposed CIN closure requires prediction of a boundary layer mean turbulent kinetic energy (TKE) and a horizontal moisture variance, both of which are strongly correlated with precipitation. For our cases, CIN closure predicts cloud-base mass flux in deep convective environments as well as the best possible bulk entraining CAPE closure, but unlike the latter, CIN closure also works well for shallow cumulus convection without retuning of parameters.


2016 ◽  
Vol 73 (11) ◽  
pp. 4427-4437 ◽  
Author(s):  
Hien Xuan Bui ◽  
Jia-Yuh Yu ◽  
Chia Chou

Abstract Interactions between cumulus convection and its large-scale environment have been recognized as crucial to the understanding of tropical climate and its variability. In this study, the moist static energy (MSE) budget is employed to investigate the potential impact of the vertical structure of large-scale vertical motion in tropical climate based on results from both reanalysis data and model simulation. Two domains are selected over the western and eastern Pacific with vertical motion profiles that are dominated by top-heavy and bottom-heavy structures, respectively. The bottom-heavy structure is climatologically associated with more shallow convection, while the top-heavy structure is related to more deep convection. The column-integrated vertical MSE advection of top-heavy vertical motion is positive, while that of bottom-heavy vertical motion tends to be negative. Controlling factors responsible for the above vertical MSE advection contrast are discussed based on a simple decomposition of the MSE budget equation. It was found that the sign of vertical MSE advection is determined mainly by the vertical moisture transport, the magnitude of which is very sensitive to the structure of vertical motion. A top-heavy (bottom heavy) structure of vertical motion favors an export (import) of MSE and a positive (negative) value of the vertical MSE advection.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 700 ◽  
Author(s):  
Yanet Díaz-Esteban ◽  
Graciela B. Raga

The present study aims to determine the factors influencing the transition from shallow to deep convection in the trade winds region using an observational approach, with emphasis in the Yucatan Peninsula in eastern Mexico. The methodology is based on a discrimination of two regimes of convection: a shallow cumulus regime, usually with little or no precipitation associated, and an afternoon deep convection regime, with large amounts of precipitation, preceded by a short period of shallow convection. Then, composites of meteorological fields at surface and several vertical levels, for each of the two convection regimes, are compared to infer which meteorological factors are involved in the development of deep convection in this region. Also, the relationship between meteorological variables and selected regime-transition parameters is evaluated only for deep convection regime days. Results indicate the importance of dynamic factors, such as the meridional wind component, in the transition from shallow to deep convection. As expected, thermodynamic variables, such as the low-level specific humidity in the shallow cumulus layer, also contribute to the regime transition. The presence of a southerly component of wind at low- to mid-levels during the early morning in deep convection days provides the shallow cumulus with a more favorable environment so that transition can occur, since abundant moisture from the Caribbean is supplied through this prevailing southern wind. The results can be relevant for reducing uncertainties regarding some important parameters in global and regional models, which could lead to improved simulations of the transition from shallow to deep convection and precipitation.


2012 ◽  
Vol 69 (6) ◽  
pp. 1936-1956 ◽  
Author(s):  
Ji Nie ◽  
Zhiming Kuang

Abstract Responses of shallow cumuli to large-scale temperature/moisture perturbations are examined through diagnostics of large-eddy simulations (LESs) of the undisturbed Barbados Oceanographic and Meteorological Experiment (BOMEX) case and a stochastic parcel model. The perturbations are added instantaneously and allowed to evolve freely afterward. The parcel model reproduces most of the changes in the LES-simulated cloudy updraft statistics in response to the perturbations. Analyses of parcel histories show that a positive temperature perturbation forms a buoyancy barrier, which preferentially eliminates parcels that start with lower equivalent potential temperature or have experienced heavy entrainment. Besides the amount of entrainment, the height at which parcels entrain is also important in determining their fate. Parcels entraining at higher altitudes are more likely to overcome the buoyancy barrier than those entraining at lower altitudes. Stochastic entrainment is key for the parcel model to reproduce the LES results. Responses to environmental moisture perturbations are quite small compared to those to temperature perturbations because changing environmental moisture is ineffective in modifying buoyancy in the BOMEX shallow cumulus case. The second part of the paper further explores the feasibility of a stochastic parcel–based cumulus parameterization. Air parcels are released from the surface layer and temperature/moisture fluxes effected by the parcels are used to calculate heating/moistening tendencies due to both cumulus convection and boundary layer turbulence. Initial results show that this conceptually simple parameterization produces realistic convective tendencies and also reproduces the LES-simulated mean and variance of cloudy updraft properties, as well as the response of convection to temperature/moisture perturbations.


2020 ◽  
Author(s):  
George Spill ◽  
Philip Stier ◽  
Paul Field ◽  
Guy Dagan

<p>Shallow cumulus clouds interact with their environment in myriad significant ways, and yet their behavour is still poorly understood, and is responsible for much uncertainty in climate models. Improving our understanding of these clouds is therefore an important part of improving our understanding of the climate system as a whole.</p><p>Modelling studies of shallow convection have traditionally made use of highly idealised simulations using large-eddy models, which allow for high resolution, detailed simulations. However, this idealised nature, with periodic boundaries and constant forcing, and the quasi-equilibrium cloud fields produced, means that they do not capture the effect of transient forcing and conditions found in the real atmosphere, which contains shallow cumulus cloud fields unlikely to be in equilibrium.<span> </span></p><p>Simulations with more realistic nested domains and forcings have previously been shown to have significant persistent responses differently to aerosol perturbations, in contrast to many large eddy simulations in which perturbed runs tend to reach a similar quasi-equilibrium.<span> </span></p><p>Here, we further this investigation by using a single model to present a comparison of familiar idealised simulations of trade wind cumuli in periodic domains, and simulations with a nested domain, whose boundary conditions are provided by a global driving model, able to simulate transient synoptic conditions.<span> </span></p><p>The simulations are carried out using the Met Office Unified Model (UM), and are based on a case study from the Rain In Cumulus over the Ocean (RICO) field campaign. Large domains of 500km are chosen in order to capture large scale cloud field behaviour. A double-moment interactive microphysics scheme is used, along with prescribed aerosol profiles based on RICO observations, which are then perturbed.</p><p>We find that the choice between realistic nested domains with transient forcing and idealised periodic domains with constant forcing does indeed affect the nature of the response to aerosol perturbations, with the realistic simulations displaying much larger persistent changes in domain mean fields such as liquid water path and precipitation rate.<span> </span></p>


2006 ◽  
Vol 134 (10) ◽  
pp. 2688-2701 ◽  
Author(s):  
L. Gustavo Pereira ◽  
Steven A. Rutledge

Abstract The characteristics of shallow and deep convection during the Tropical Rainfall Measuring Mission/Large-Scale Biosphere–Atmosphere Experiment in Amazonia (TRMM/LBA) and the Eastern Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC) are evaluated in this study. Using high-quality radar data collected during these two tropical field experiments, the reflectivity profiles, rain rates, fraction of convective area, and fraction of rainfall volume in each region are examined. This study focuses on the diurnal cycle of shallow and deep convection for the identified wind regimes in both regions. The easterly phase in TRMM/LBA and the northerly wind regime in EPIC were associated with the strongest convection, indicated by larger rain rates, higher reflectivities, and deeper convective cores compared to the westerly phase in TRMM/LBA and the southerly regime in EPIC. The diurnal cycle results indicated that convection initiates in the morning and peaks in the afternoon during TRMM/LBA, whereas in the east Pacific the diurnal cycle of convection is very dependent on the wind regime. Deep convection in the northerly regime peaks around midnight, nearly 6 h before its southerly regime counterpart. Moreover, the northerly regime of EPIC was dominated by convective rainfall, whereas the southerly regime was dominated by stratiform rainfall. The diurnal variability was more pronounced during TRMM/LBA than in EPIC. Shallow convection was associated with 10% and 3% of precipitation during TRMM/LBA and EPIC, respectively.


2008 ◽  
Vol 136 (11) ◽  
pp. 4168-4187 ◽  
Author(s):  
Yanjun Jiao ◽  
Colin Jones

Abstract This paper presents results from the Canadian Regional Climate Model (CRCM) contribution to the Global Energy and Water Cycle Experiment (GEWEX) Pacific Cross-section Intercomparison Project. This experiment constitutes a simulation of stratocumulus, trade cumulus, and deep convective transitions along a cross section in the tropical Pacific. The simulated seasonal mean cloud and convection are compared between an original version of CRCM (CRCM4) and a modified version (CRCMM) with refined parameterizations. Results are further compared against available observations and reanalysis data. The specific parameterization refinements touch upon the triggering and closure of shallow convection, the cloud and updraft characteristics of deep convection, the parameterization of large-scale cloud fraction, the calculation of the eddy diffusivity in the boundary layer, and the evaporation of falling large-scale precipitation. CRCMM shows substantial improvement in many aspects of the simulated seasonal mean cloud, convection, and precipitation over the tropical Pacific, CRCMM-simulated total column water vapor, total cloud cover, and precipitation are in better agreement with observations than in the original CRCM4 model. The maximum frequency of the shallow convection shifts from the ITCZ region in CRCM4 to the subtropics in CRCMM; accordingly, excessive cloud in the shallow cumulus region in CRCM4 is greatly diminished. Finally, CRCMM better simulates the vertical structure of relative humidity, cloud cover, and vertical velocity, at least when compared to the 40-yr ECMWF Re-Analysis. Analyses of sensitivity experiments assessing specific effects of individual parameterization changes indicate that the modification to the eddy diffusivity in the boundary layer and changes to deep convection contribute most significantly to the overall model improvements.


2012 ◽  
Vol 69 (12) ◽  
pp. 3463-3470 ◽  
Author(s):  
Jun-Ichi Yano ◽  
Robert Plant

Abstract The present paper presents a simple theory for the transformation of nonprecipitating, shallow convection into precipitating, deep convective clouds. To make the pertinent point a much idealized system is considered, consisting only of shallow and deep convection without large-scale forcing. The transformation is described by an explicit coupling between these two types of convection. Shallow convection moistens and cools the atmosphere, whereas deep convection dries and warms the atmosphere, leading to destabilization and stabilization, respectively. Consequently, in their own stand-alone modes, shallow convection perpetually grows, whereas deep convection simply damps: the former never reaches equilibrium, and the latter is never spontaneously generated. Coupling the modes together is the only way to reconcile these undesirable separate tendencies, so that the convective system as a whole can remain in a stable periodic state under this idealized setting. Such coupling is a key missing element in current global atmospheric models. The energy cycle description used herein is fully consistent with the original formulation by Arakawa and Schubert, and is suitable for direct implementation into models using a mass flux parameterization. The coupling would alleviate current problems with the representation of these two types of convection in numerical models. The present theory also provides a pertinent framework for analyzing large-eddy simulations and cloud-resolving modeling.


Author(s):  
Cheng Tao ◽  
Yunyan Zhang ◽  
Qi Tang ◽  
Hsi-Yen Ma ◽  
Virendra P. Ghate ◽  
...  

AbstractUsing the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land-atmosphere (L-A) coupling in North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the Local Coupling metrics (Santanello et al. 2018). NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local L-A coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases towards mid-to-late summers, which may be an amplification through a positive L-A feedback among initial atmosphere and land states, convection triggering and large-scale circulations.


2005 ◽  
Vol 133 (7) ◽  
pp. 1938-1960 ◽  
Author(s):  
Stéphane Bélair ◽  
Jocelyn Mailhot ◽  
Claude Girard ◽  
Paul Vaillancourt

Abstract The role and impact that boundary layer and shallow cumulus clouds have on the medium-range forecast of a large-scale weather system is discussed in this study. A mesoscale version of the Global Environmental Multiscale (GEM) atmospheric model is used to produce a 5-day numerical forecast of a midlatitude large-scale weather system that occurred over the Pacific Ocean during February 2003. In this version of GEM, four different schemes are used to represent (i) boundary layer clouds (including stratus, stratocumulus, and small cumulus clouds), (ii) shallow cumulus clouds (overshooting cumulus), (iii) deep convection, and (iv) nonconvective clouds. Two of these schemes, that is, the so-called MoisTKE and Kuo Transient schemes for boundary layer and overshooting cumulus clouds, respectively, have been recently introduced in GEM and are described in more detail. The results show that GEM, with this new cloud package, is able to represent the wide variety of clouds observed in association with the large-scale weather system. In particular, it is found that the Kuo Transient scheme is mostly responsible for the shallow/intermediate cumulus clouds in the rear portion of the large-scale system, whereas MoisTKE produces the low-level stratocumulus clouds ahead of the system. Several diagnostics for the rear portion of the system reveal that the role of MoisTKE is mainly to increase the vertical transport (diffusion) associated with the boundary layer clouds, while Kuo Transient is acting in a manner more consistent with convective stabilization. As a consequence, MoisTKE is not able to remove the low-level shallow cloud layer that is incorrectly produced by the GEM nonconvective condensation scheme. Kuo Transient, in contrast, led to a significant reduction of these nonconvective clouds, in better agreement with satellite observations. This improved representation of stratocumulus and cumulus clouds does not have a large impact on the overall sea level pressure patterns of the large-scale weather system. Precipitation in the rear portion of the system, however, is found to be smoother when MoisTKE is used, and significantly less when the Kuo Transient scheme is switched on.


Sign in / Sign up

Export Citation Format

Share Document