scholarly journals Observational Evidence of the Transition from Shallow to Deep Convection in the Western Caribbean Trade Winds

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 700 ◽  
Author(s):  
Yanet Díaz-Esteban ◽  
Graciela B. Raga

The present study aims to determine the factors influencing the transition from shallow to deep convection in the trade winds region using an observational approach, with emphasis in the Yucatan Peninsula in eastern Mexico. The methodology is based on a discrimination of two regimes of convection: a shallow cumulus regime, usually with little or no precipitation associated, and an afternoon deep convection regime, with large amounts of precipitation, preceded by a short period of shallow convection. Then, composites of meteorological fields at surface and several vertical levels, for each of the two convection regimes, are compared to infer which meteorological factors are involved in the development of deep convection in this region. Also, the relationship between meteorological variables and selected regime-transition parameters is evaluated only for deep convection regime days. Results indicate the importance of dynamic factors, such as the meridional wind component, in the transition from shallow to deep convection. As expected, thermodynamic variables, such as the low-level specific humidity in the shallow cumulus layer, also contribute to the regime transition. The presence of a southerly component of wind at low- to mid-levels during the early morning in deep convection days provides the shallow cumulus with a more favorable environment so that transition can occur, since abundant moisture from the Caribbean is supplied through this prevailing southern wind. The results can be relevant for reducing uncertainties regarding some important parameters in global and regional models, which could lead to improved simulations of the transition from shallow to deep convection and precipitation.

2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2007 ◽  
Vol 20 (11) ◽  
pp. 2623-2642 ◽  
Author(s):  
Roel A. J. Neggers ◽  
J. David Neelin ◽  
Bjorn Stevens

Abstract Subtropical shallow cumulus convection is shown to play an important role in tropical climate dynamics, in which convective mixing between the atmospheric boundary layer and the free troposphere initiates a chain of large-scale feedbacks. It is found that the presence of shallow convection in the subtropics helps set the width and intensity of oceanic ITCZs, a mechanism here termed the shallow cumulus humidity throttle because of the control exerted on the moisture supply to the deep convection zones. These conclusions are reached after investigations based on a tropical climate model of intermediate complexity, with sufficient vertical degrees of freedom to capture (i) the effects of shallow convection on the boundary layer moisture budget and (ii) the dependency of deep convection on the free-tropospheric humidity. An explicit shallow cumulus mixing time scale in this simple parameterization is varied to assess sensitivity, with moist static energy budget analysis aiding to identify how the local effect of shallow convection is balanced globally. A reduction in the mixing efficiency of shallow convection leads to a more humid atmospheric mixed layer, and less surface evaporation, with a drier free troposphere outside of the convecting zones. Advection of drier free-tropospheric air from the subtropics by transients such as dry intrusions, as well as by mean inflow, causes a substantial narrowing of the convection zones by inhibition of deep convection at their margins. In the tropical mean, the reduction of convection by this narrowing more than compensates for the reduction in surface evaporation. Balance is established via a substantial decrease in tropospheric temperatures throughout the Tropics, associated with the reduction in convective heating. The temperature response—and associated radiative contribution to the net flux into the column—have broad spatial scales, while the reduction of surface evaporation is concentrated outside of the convecting zones. This results in differential net flux across the convecting zone, in a sense that acts to destabilize those areas that do convect. This results in stronger large-scale convergence and more intense convection within a narrower area. Finally, mixed layer ocean experiments show that in a coupled ocean–atmosphere system this indirect feedback mechanism can lead to SST differences up to +2 K between cases with different shallow cumulus mixing time, tending to counteract the direct radiative impact of low subtropical clouds on SST.


2014 ◽  
Vol 71 (11) ◽  
pp. 3881-3901 ◽  
Author(s):  
Fabio D’Andrea ◽  
Pierre Gentine ◽  
Alan K. Betts ◽  
Benjamin R. Lintner

Abstract A model unifying the representation of the planetary boundary layer and dry, shallow, and deep convection, the probabilistic plume model (PPM), is presented. Its capacity to reproduce the triggering of deep convection over land is analyzed in detail. The model accurately reproduces the timing of shallow convection and of deep convection onset over land, which is a major issue in many current general climate models. PPM is based on a distribution of plumes with varying thermodynamic states (potential temperature and specific humidity) induced by surface-layer turbulence. Precipitation is computed by a simple ice microphysics, and with the onset of precipitation, downdrafts are initiated and lateral entrainment of environmental air into updrafts is reduced. The most buoyant updrafts are responsible for the triggering of moist convection, causing the rapid growth of clouds and precipitation. Organization of turbulence in the subcloud layer is induced by unsaturated downdrafts, and the effect of density currents is modeled through a reduction of the lateral entrainment. The reduction of entrainment induces further development from the precipitating congestus phase to full deep cumulonimbus. Model validation is performed by comparing cloud base, cloud-top heights, timing of precipitation, and environmental profiles against cloud-resolving models and large-eddy simulations for two test cases. These comparisons demonstrate that PPM triggers deep convection at the proper time in the diurnal cycle and produces reasonable precipitation. On the other hand, PPM underestimates cloud-top height.


2012 ◽  
Vol 12 (17) ◽  
pp. 8055-8072 ◽  
Author(s):  
B. Kucienska ◽  
G. B. Raga ◽  
R. Romero-Centeno

Abstract. Lightning activity detected by the World Wide Lightning Location Network (WWLLN) over oceanic regions adjacent to Mexico is often as high as that observed over the continent. In order to explore the possible causes of the observed high flash density over those regions, the relationships between lightning, rainfall, vertical hydrometeor profiles, latent heating, wind variability and aerosol optical depth are analyzed. The characteristics of lightning and precipitation over four oceanic zones adjacent to Mexican coastlines are contrasted against those over the continent. The number of flashes per rainfall over some coastal maritime regions is found to be higher than over the continent. The largest number of flashes per rainfall is observed during the biomass burning season. In addition, we compare two smaller areas of the Tropical Pacific Ocean: one located within the Inter-Tropical Convergence Zone and characterized by high rainfall and weak lightning activity and the other one influenced by a continental wind jet and characterized by high rainfall and strong lightning activity. During the rainy season, the monthly distribution of lightning within the region influenced by the continental wind jet is contrary to that of rainfall. Moreover, the monthly variability of lightning is very similar to the variability of the meridional wind component and it is also related to the variability of aerosol optical depth. The analysis suggests that the high lightning activity observed over coastal Pacific region is linked to the continental cloud condensation nuclei advected over the ocean. Analysis of daily observations indicates that the greatest lightning density is observed for moderate values of the aerosol optical depth, between 0.2 and 0.35.


2014 ◽  
Vol 7 (2) ◽  
pp. 2249-2291 ◽  
Author(s):  
J. K. Fletcher ◽  
C. S. Bretherton ◽  
H. Xiao ◽  
R. Sun ◽  
J. Han

Abstract. The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of shortwave cloud radiative forcing, and affect predicted sea-surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parametrisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.


2012 ◽  
Vol 25 (19) ◽  
pp. 6684-6700 ◽  
Author(s):  
Adam H. Monahan

Abstract The temporal autocorrelation structures of sea surface vector winds and wind speeds are considered. Analyses of scatterometer and reanalysis wind data demonstrate that the autocorrelation functions (acf) of surface zonal wind, meridional wind, and wind speed generally drop off more rapidly in the midlatitudes than in the low latitudes. Furthermore, the meridional wind component and wind speed generally decorrelate more rapidly than the zonal wind component. The anisotropy in vector wind decorrelation scales is demonstrated to be most pronounced in the storm tracks and near the equator, and to be a feature of winds throughout the depth of the troposphere. The extratropical anisotropy is interpreted in terms of an idealized kinematic eddy model as resulting from differences in the structure of wind anomalies in the directions along and across eddy paths. The tropical anisotropy is interpreted in terms of the kinematics of large-scale equatorial waves and small-scale convection. Modeling the vector wind fluctuations as Gaussian, an explicit expression for the wind speed acf is obtained. This model predicts that the wind speed acf should decay more rapidly than that of at least one component of the vector winds. Furthermore, the model predicts a strong dependence of the wind speed acf on the ratios of the means of vector wind components to their standard deviations. These model results are shown to be broadly consistent with the relationship between the acf of vector wind components and wind speed, despite the presence of non-Gaussian structure in the observed surface vector winds.


2018 ◽  
Vol 75 (6) ◽  
pp. 1909-1932 ◽  
Author(s):  
Yizhou Zhuang ◽  
Rong Fu ◽  
Hongqing Wang

Abstract We developed an entraining parcel approach that partitions parcel buoyancy into contributions from different processes (e.g., adiabatic cooling, condensation, freezing, and entrainment). Applying this method to research-quality radiosonde profiles provided by the Atmospheric Radiation Measurement (ARM) program at six sites, we evaluated how atmospheric thermodynamic conditions and entrainment influence various physical processes that determine the vertical buoyancy structure across different climate regimes as represented by these sites. The differences of morning buoyancy profiles between the deep convection (DC)/transition cases and shallow convection (SC)/nontransition cases were used to assess preconditions important for shallow-to-deep convection transition. Our results show that for continental sites such as the U.S. Southern Great Plains (SGP) and west-central Africa, surface conditions alone are enough to account for the buoyancy difference between DC and SC cases, although entrainment further enhances the buoyancy difference at SGP. For oceanic sites in the tropical west Pacific, humidity dilution in the lower to middle free troposphere (~1–6 km) and temperature mixing in the middle to upper troposphere (>4 km) have the most important influences on the buoyancy difference between DC and SC cases. For the humid central Amazon region, entrainment in both the boundary layer and the lower free troposphere (~0–4 km) have significant contributions to the buoyancy difference; the upper-tropospheric influence seems unimportant. In addition, the integral of the condensation term, which represents the parcel’s ability to transform available water vapor into heat through condensation, provides a better discrimination between DC and SC cases than the integral of buoyancy or the convective available potential energy (CAPE).


2021 ◽  
Author(s):  
Benedikt Gast ◽  
Ales Kuchar ◽  
Gunter Stober ◽  
Christoph Jacobi ◽  
Dimitry Pokhotelov ◽  
...  

<p class="western" align="justify"><span lang="en-GB">Previous studies that analysed the mesosphere and lower thermosphere (MLT) dynamics during sudden stratospheric warmings (SSWs) were limited only to particular SSWs or focused on a particular station representative only for some regions. Here we describe a comprehensive study of the average meteorological conditions during SSWs with a special focus on the general contribution of planetary (PW) and gravity (GW) waves as primary coupling mechanisms between lower and upper atmosphere. The average meteorological conditions in the MLT during SSWs were analyzed using a superposed epoch analysis (Denton et al., 2019) of meteor radar measurements for stations in the northern (NH: Collm, Kiruna, Sodankyla, CMOR) and the southern hemisphere (SH: Rio Grande, Davis, Rothera) for the altitude range of 80–100 km Using the adaptive spectral filtering method (Stober et al., 2021), we study in detail PW and GW characteristics in addition to measured zonal and meridional wind components in a time period from 2000 to 2020.</span></p> <p class="western" align="justify"><span lang="en-GB">In the NH the zonal wind is typically decreasing from around two weeks before the SSW onset, corresponding to an increased PW activity. Around the SSW onset, latitudinal differences in the zonal wind component as well as the PW activity can be seen. In the weeks before the SSW onset, the stations in the NH also show an increased level of GW kinetic energy. The meridional wind at the NH stations fluctuates with a periodicity of about 10 days before and around the onset. In contrast to previous studies (e.g. Yasui et al., 2016), the measurements in the SH are consistent with the inter-hemispheric coupling hypothesis. The expected downward shift of GW drag (Körnich and Becker, 2010) was reproduced by a downward travelling layer of enhanced GW activity at Davis and Rio Grande. Finally, the role of the terdiurnal tide in the GW energy composite is considered.</span></p>


2017 ◽  
Author(s):  
Andrea K. Steiner ◽  
Bettina C. Lackner ◽  
Mark A. Ringer

Abstract. High quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent high updraft or downdraft velocities. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 % to 30 % over oceans whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next generation climate models.


2010 ◽  
Vol 67 (2) ◽  
pp. 468-484 ◽  
Author(s):  
David M. Romps ◽  
Zhiming Kuang

Abstract Using a passive tracer, entrainment is studied in cloud-resolving simulations of deep convection in radiative–convective equilibrium. It is found that the convective flux of undiluted parcels decays with height exponentially, indicating a constant probability per vertical distance of mixing with environmental air. This probability per distance is sufficiently large that undiluted updrafts are negligible above a height of 4–5 km and virtually absent above 10 km. These results are shown to be independent of the horizontal grid size within the range of 3.2 km to 100 m. Plumes that do reach the tropopause are found to be highly diluted. An equivalent potential temperature is defined that is exactly conserved for all reversible adiabatic transformations, including those with ice. Using this conserved variable, it is shown that the latent heat of fusion (from both freezing and deposition) causes only a small increase in the level of neutral buoyancy near the tropopause. In fact, when taken to sufficiently low pressures, a parcel with an ice phase ends up colder than it would without an ice phase. Nevertheless, the contribution from fusion to a parcel’s kinetic energy is quite large. Using an ensemble of tracers, information is encoded in parcels at the cloud base and decoded where the parcel is observed in the free troposphere. Using this technique, clouds at the tropopause are diagnosed for their cloud-base temperature, specific humidity, and vertical velocity. Using these as the initial values for a Lagrangian parcel model, it is shown that fusion provides the kinetic energy required for diluted parcels to reach the tropopause.


Sign in / Sign up

Export Citation Format

Share Document