scholarly journals What Drives the Variability of Evaporative Demand across the Conterminous United States?

2012 ◽  
Vol 13 (4) ◽  
pp. 1195-1214 ◽  
Author(s):  
Michael Hobbins ◽  
Andrew Wood ◽  
David Streubel ◽  
Kevin Werner

Abstract To understand the sources of temporal and spatial variability of atmospheric evaporative demand across the conterminous United States (CONUS), a mean-value, second-moment uncertainty analysis is applied to a spatially distributed dataset of daily synthetic pan evaporation for 1980–2009. This evaporative demand measure is from the “PenPan” model, which is a combination equation calibrated to mimic observations from U.S. class-A evaporation pans and here driven by six North American Land Data Assimilation System variables: temperature, specific humidity, station pressure, wind speed, and downwelling shortwave and longwave radiation. The variability of evaporative demand is decomposed across various time scales into contributions from these drivers. Contrary to popular expectation and much hydrologic practice, temperature is not always the most significant driver of temporal variability in evaporative demand, particularly at subannual time scales. Instead, depending on the season, one of four drivers (temperature, specific humidity, downwelling shortwave radiation, and wind speed) dominates across different regions of CONUS. Temperature generally dominates in the northern continental interior. This analysis assists land surface modelers in balancing parameter parsimony and physical representativeness. Patterns of dominant drivers are shown to cycle seasonally, with clear implications for modeling evaporative demand in operational hydrology or as a metric of climate change and variability. Depending on the region and season, temperature, specific humidity, downwelling shortwave radiation, and wind speed must together be examined, with downwelling longwave radiation as a secondary input. If any variable may be ignored, it is atmospheric pressure. Parameterizations of evaporative demand based solely on temperature should be avoided at all time scales.

2016 ◽  
Vol 17 (6) ◽  
pp. 1763-1779 ◽  
Author(s):  
Daniel J. McEvoy ◽  
Justin L. Huntington ◽  
Michael T. Hobbins ◽  
Andrew Wood ◽  
Charles Morton ◽  
...  

Abstract Precipitation, soil moisture, and air temperature are the most commonly used climate variables to monitor drought; however, other climatic factors such as solar radiation, wind speed, and humidity can be important drivers in the depletion of soil moisture and evolution and persistence of drought. This work assesses the Evaporative Demand Drought Index (EDDI) at multiple time scales for several hydroclimates as the second part of a two-part study. EDDI and individual evaporative demand components were examined as they relate to the dynamic evolution of flash drought over the central United States, characterization of hydrologic drought over the western United States, and comparison to commonly used drought metrics of the U.S. Drought Monitor (USDM), Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and the evaporative stress index (ESI). Two main advantages of EDDI over other drought indices are that it is independent of precipitation (similar to ESI) and it can be decomposed to identify the role individual evaporative drivers have on drought onset and persistence. At short time scales, spatial distributions and time series results illustrate that EDDI often indicates drought onset well in advance of the USDM, SPI, and SSI. Results illustrate the benefits of physically based evaporative demand estimates and demonstrate EDDI’s utility and effectiveness in an easy-to-implement agricultural early warning and long-term hydrologic drought–monitoring tool with potential applications in seasonal forecasting and fire-weather monitoring.


2021 ◽  
Vol 11 (23) ◽  
pp. 11221
Author(s):  
Ji Won Yoon ◽  
Sujeong Lim ◽  
Seon Ki Park

This study aims to improve the performance of the Weather Research and Forecasting (WRF) model in the sea breeze circulation using the micro-Genetic Algorithm (micro-GA). We found the optimal combination of four physical parameterization schemes related to the sea breeze system, including planetary boundary layer (PBL), land surface, shortwave radiation, and longwave radiation, in the WRF model coupled with the micro-GA (WRF-μGA system). The optimization was performed with respect to surface meteorological variables (2 m temperature, 2 m relative humidity, 10 m wind speed and direction) and a vertical wind profile (wind speed and direction), simultaneously for three sea breeze cases over the northeastern coast of South Korea. The optimized set of parameterization schemes out of the WRF-μGA system includes the Mellor–Yamada–Nakanishi–Niino level-2.5 (MYNN2) for PBL, the Noah land surface model with multiple parameterization options (Noah-MP) for land surface, and the Rapid Radiative Transfer Model for GCMs (RRTMG) for both shortwave and longwave radiation. The optimized set compared with the various other sets of parameterization schemes for the sea breeze circulations showed up to 29 % for the improvement ratio in terms of the normalized RMSE considering all meteorological variables.


2018 ◽  
Vol 64 (243) ◽  
pp. 89-99 ◽  
Author(s):  
JIZU CHEN ◽  
XIANG QIN ◽  
SHICHANG KANG ◽  
WENTAO DU ◽  
WEIJUN SUN ◽  
...  

ABSTRACTWe analyzed a 2-year time series of meteorological data (January 2011–December 2012) from three automatic weather stations on Laohugou glacier No. 12, western Qilian Mountains, China. Air temperature, humidity and incoming radiation were significantly correlated between the three sites, while wind speed and direction were not. In this work, we focus on the effects of clouds on other meteorological parameters and on glacier melt. On an average, ~18% of top-of-atmosphere shortwave radiation was attenuated by the clear-sky atmosphere, and clouds attenuated a further 12%. Most of the time the monthly average increases in net longwave radiation caused by clouds were larger than decreases in net shortwave radiation but there was a tendency to lose energy during the daytime when melting was most intense. Air temperature and wind speed related to turbulent heat flux were found to suppress glacier melt during cloudy periods, while increased water vapor pressure during cloudy days could enhance glacier melt by reducing energy loss by latent heat. From these results, we have increased the physical understanding of the significance of cloud effects on continental glaciers.


2017 ◽  
Vol 145 (12) ◽  
pp. 4727-4745 ◽  
Author(s):  
Elena Tomasi ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Massimiliano de Franceschi

The paper presents the results of high-resolution simulations performed with the WRF Model, coupled with two different land surface schemes, Noah and Noah_MP, with the aim of accurately reproducing winter season meteorological conditions in a typical Alpine valley. Accordingly, model results are compared against data collected during an intensive field campaign performed in the Adige Valley, in the eastern Italian Alps. In particular, the ability of the model in reproducing the time evolution of 2-m temperature and of incoming and outgoing shortwave and longwave radiation is examined. The validation of model results highlights that, in this context, WRF reproduces rather poorly near-surface temperature over snow-covered terrain, with an evident underestimation, during both daytime and nighttime. Furthermore it fails to capture specific atmospheric processes, such as the temporal evolution of the ground-based thermal inversion. The main cause of these errors lies in the miscalculation of the mean gridcell albedo, resulting in an inaccurate estimate of the reflected solar radiation calculated by both Noah and Noah_MP. Therefore, modifications to the initialization, to the land-use classification, and to both land surface models are performed to improve model results, by intervening in the calculation of the albedo, of the snow cover, and of the surface temperature. Qualitative and quantitative analyses show that, after these changes, a significant improvement in the comparability between model results and observations is achieved. In particular, outgoing shortwave radiation is lowered, 2-m temperature maxima increased accordingly, and ground-based thermal inversions are better captured.


2019 ◽  
Vol 19 (20) ◽  
pp. 13227-13241 ◽  
Author(s):  
Stephan Nyeki ◽  
Stefan Wacker ◽  
Christine Aebi ◽  
Julian Gröbner ◽  
Giovanni Martucci ◽  
...  

Abstract. The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a.s.l.) in Switzerland for the 1996–2015 period. Ground temperature, specific humidity, and atmospheric integrated water vapour (IWV) trends were positive during all-sky and cloud-free conditions. All-sky DSR and DLR trends were in the ranges of 0.6–4.3 W m−2 decade−1 and 0.9–4.3 W m−2 decade−1, respectively, while corresponding cloud-free trends were −2.9–3.3 W m−2 decade−1 and 2.9–5.4 W m−2 decade−1. Most trends were significant at the 90 % and 95 % confidence levels. The cloud radiative effect (CRE) was determined using radiative-transfer calculations for cloud-free DSR and an empirical scheme for cloud-free DLR. The CRE decreased in magnitude by 0.9–3.1 W m−2 decade−1 (only one trend significant at 90 % confidence level), which implies a change in macrophysical and/or microphysical cloud properties. Between 10 % and 70 % of the increase in DLR is explained by factors other than ground temperature and IWV. A more detailed, long-term quantification of cloud changes is crucial and will be possible in the future, as cloud cameras have been measuring reliably at two of the four stations since 2013.


2012 ◽  
Vol 25 (22) ◽  
pp. 7781-7801 ◽  
Author(s):  
Susan C. Bates ◽  
Baylor Fox-Kemper ◽  
Steven R. Jayne ◽  
William G. Large ◽  
Samantha Stevenson ◽  
...  

Abstract Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.


2018 ◽  
Vol 31 (2) ◽  
pp. 671-691 ◽  
Author(s):  
Clara S. Draper ◽  
Rolf H. Reichle ◽  
Randal D. Koster

In the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) system the land is forced by replacing the model-generated precipitation with observed precipitation before it reaches the surface. This approach is motivated by the expectation that the resultant improvements in soil moisture will lead to improved land surface latent heating (LH). Here aspects of the MERRA-2 land surface energy budget and 2-m air temperatures [Formula: see text] are assessed. For global land annual averages, MERRA-2 appears to overestimate the LH (by 5 W m−2), the sensible heating (by 6 W m−2), and the downwelling shortwave radiation (by 14 W m−2) while underestimating the downwelling and upwelling (absolute) longwave radiation (by 10–15 W m−2 each). These results differ only slightly from those for NASA’s previous reanalysis, MERRA. Comparison to various gridded reference datasets over boreal summer (June–August) suggests that MERRA-2 has particularly large positive biases (>20 W m−2) where LH is energy limited and that these biases are associated with evaporative fraction biases rather than radiation biases. For time series of monthly means during boreal summer, the globally averaged anomaly correlations [Formula: see text] with reference data were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs Global Land Evaporation Amsterdam Model data) and the daily maximum T2m (from 0.69 to 0.75 vs Climatic Research Unit data). In regions where [Formula: see text] is particularly sensitive to the precipitation corrections (including the central United States, the Sahel, and parts of South Asia), the changes in the [Formula: see text] [Formula: see text] are relatively large, suggesting that the observed precipitation influenced the [Formula: see text] performance.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1996
Author(s):  
Kai Duan ◽  
Jiali Guo ◽  
Tiesong Hu ◽  
Xianxun Wang ◽  
Yadong Mei

Decreases in wind speed (i.e., terrestrial stilling) and radiation (i.e., solar dimming) have been identified as important causes of aridity change both globally and regionally. To understand how their roles have varied across different natural and socioeconomic circumstances in China, this study presents a nationwide attribution analysis of land surface drying/wetting across the ten first-level river basins. The results suggest that consistent warming and reductions in relative humidity have significantly enhanced atmospheric evaporative demand and driven the land surface to become drier over the past six decades. However, the widespread terrestrial stilling and solar dimming have largely offset such trends by suppressing evaporation. While spatially varying changes in precipitation were the most influential driver of aridity change over half of the 713 used climate sites, decreasing wind speed and radiation were identified as the dominant cause of wetting at 15% and 13% of the sites, respectively. The impacts of terrestrial stilling and solar dimming were generally more prominent in the north (e.g., the Liao River, Songhuajiang, Hai River, and Huai River basins) and south (e.g., the Southeast, Pearl River, and Yangtze River basins) respectively, which could be associated with the weakening monsoon and intensified anthropogenic disturbances such as ecological restoration, urbanization, and air pollution. We conclude that more attention needs to be paid to the independent and combined climatological impacts of global- and regional-level human activities to develop proactive adaptation strategies of water and land management.


2015 ◽  
Vol 72 (12) ◽  
pp. 4615-4628 ◽  
Author(s):  
Alexander Ruzmaikin ◽  
Hartmut H. Aumann ◽  
Jonathan H. Jiang

Abstract The variability of interhemispheric symmetry of Earth’s energy serves as an independent indicator of climate change. The analysis of updated data obtained from satellite measurements at the top of the atmosphere (TOA) shows that in accord with Earth’s orbital requirements the annually averaged incident solar radiation is the same in the Northern and Southern Hemispheres, the annual mean of the reflected shortwave radiation is almost north–south symmetric, and the annual mean of the outgoing longwave radiation is larger in the Northern Hemisphere by 1.4 W m−2. These mean radiations systematically differ from the mean radiations found from the numerical atmospheric models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The hemispheric differences of the TOA radiations vary on the annual and interannual time scales. The multidecadal variability in Earth’s north–south temperature difference reveals a similarity of trends in both hemispheres. The Atlantic meridional transport (in contrast to the Pacific meridional transport) is found to be coherent with the interhemispheric ocean heat content (OHC) difference on decadal and multidecadal time scales, indicating a critical role of the Atlantic in the interhemispheric energy balance change.


Author(s):  
Azad Rasul

One of the most destructive natural disasters is the earthquake which brings enormous risks to humankind. The objective of the current study was to determine the Earthquake’s remote sensing multiparameter (i.e. land surface temperature (LST), air temperature, specific humidity, precipitation and wind speed) spatiotemporal anomaly of many earthquake samples occurred during 2018 around the world. In this research 11 earthquake (M > 6:0) studied (4 samples selected in a land with transparent sky situations, 3 samples in land within cloudy situations and 4 samples in marine earthquakes). The interquartile range (IQR) and mean ± 2σ methods utilized to improve the efficiency of anomalous differences. As a result, based on the IQR method, negative anomaly before the event detected during the daytime in Mexico and during the nighttime in Afghanistan. In addition, a negative outlier of brightness temperature (BT) detected in Alaska before, after and during the event. In contrast, based on IQR and mean ± 2σ positive anomaly detected in precipitation before and after the event in all investigated examples. According to mean ± 2σ, negative anomaly LST, specific humidity, sea surface temperature (SST_100) and wind detected in most examined earthquake samples. In contrast, positive SST_0 anomaly observed in Fiji and Honduras after the earthquake. Our results suggested in marine earthquakes, for earthquake forecasting we can merge a prior negative anomaly in the wind speed and SST_100. Regarding the in land cloudy sky earthquakes, merging anomaly parameters could be the negative prior anomaly in BT, skin temperature, in contrast, a positive anomaly in precipitation. In land transparent sky earthquake, usually negative prior anomalies in air temperature, specific humidity and LST.


Sign in / Sign up

Export Citation Format

Share Document