Problems Closing the Energy Balance over a Homogeneous Snow Cover during Midwinter

2012 ◽  
Vol 13 (2) ◽  
pp. 557-572 ◽  
Author(s):  
Warren Helgason ◽  
John Pomeroy

Abstract Application of the energy balance approach to estimate snowmelt inherently presumes that the external energy fluxes can be measured or modeled with sufficient accuracy to reliably estimate the internal energy changes and melt rate. However, owing to difficulties in directly measuring the internal energy content of the snow during melt periods, the ability to close the energy balance is rarely quantified. To address this, all of the external energy balance terms (sensible and latent heat fluxes, shortwave and longwave radiation fluxes, and the ground heat flux) were directly measured and compared to changes of the energy content within an extensive, homogeneous, snowpack of a level field near Saskatoon, Saskatchewan, Canada. The snow was observed to lose significant amounts of energy because of a persistent longwave radiation imbalance caused by low incoming fluxes during cold, clear-sky periods, while solar heating of the snow surface caused an increase in the outgoing fluxes. The sum of the measured turbulent heat fluxes, ground heat flux, and solar radiation fluxes were insufficient to offset these losses, however the snowpack temperatures were not observed to cool. It was concluded that an unmeasured exchange of sensible heat was occurring from the atmosphere to the snowpack. The exchange mechanism for this is not known but would appear to be consistent with the concept of a windless exchange as employed to close the energy balance in various snow models. The results suggest that caution should be exercised when using the energy balance method to determine changes in internal energy in cold snowpacks.

2011 ◽  
Vol 5 (1) ◽  
pp. 151-171 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.


2022 ◽  
Vol 16 (1) ◽  
pp. 127-142
Author(s):  
Georg Lackner ◽  
Florent Domine ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least 6 months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low-Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the upward heat flux in the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, it showed some deficiencies when simulating turbulent heat fluxes at an hourly timescale.


2021 ◽  
Author(s):  
Georg Lackner ◽  
Florent Dominé ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least six months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the heat flux into the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, showed some deficiencies when simulating turbulent heat fluxes at an hourly time scale.


2010 ◽  
Vol 4 (3) ◽  
pp. 901-947 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. Permafrost thawing is essentially determined by the surface energy balance, which potentially triggers the activation of a massive carbon source, if previously frozen organic soils are exposed to microbial decomposition. In this article, we present the first part of a comprehensive annual surface energy balance study performed at a polygonal tundra landscape in northeast Siberia, realized between spring 2007 and winter 2009. This part of the study focuses on the half year period from April to September 2007–2008, during which the surface energy balance is obtained from independent measurements of the radiation budget, the turbulent heat fluxes and the ground heat flux at several sites. The short-wave radiation is the dominant factor in the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by latent heat flux, while the sensible and the ground heat flux are both on the order of 20 to 30%. The ground heat flux is mainly consumed by active layer thawing, where 60% of soil energy storage are attributed to. The remainder is used for soil warming down to a depth of 15 m. The controlling factors for the surface energy partitioning are in particular the snow cover, the cloud cover and the soil temperature gradient. Significant surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements at different locations. However, differences in the partition between sensible and latent heat flux for the different sites only exist during conditions of high radiative forcing, which only occur occasionally.


2009 ◽  
Vol 44 (11) ◽  
pp. 1365-1373 ◽  
Author(s):  
Carlos Antonio Costa dos Santos ◽  
Bernardo Barbosa da Silva ◽  
Tantravahi Venkata Ramana Rao ◽  
Christopher Michael Usher Neale

The objective of this work was to evaluate the reliability of eddy covariance measurements, analyzing the energy balance components, evapotranspiration and energy balance closure in dry and wet growing seasons, in a banana orchard. The experiment was carried out at a farm located within the irrigation district of Quixeré, in the Lower Jaguaribe basin, in Ceará state, Brazil. An eddy covariance system was used to measure the turbulent flux. An automatic weather station was installed in a grass field to obtain the reference evapotranspiration (ET0) from the combined FAO-Penman-Monteith method. Wind speed and vapor pressure deficit are the most important variables on the evaporative process in both growing seasons. In the dry season, the heat fluxes have a similar order of magnitude, and during the wet season the latent heat flux is the largest. The eddy covariance system had acceptable reliability in measuring heat flux, with actual evapotranspiration results comparing well with those obtained by using the water balance method. The energy balance closure had good results for the study area, with mean values of 0.93 and 0.86 for the dry and wet growing seasons respectively.


2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.


2019 ◽  
Vol 23 (12) ◽  
pp. 5033-5058
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The heterogeneity of Agroecosystems, in terms of hydric conditions, crop types and states, and meteorological forcing, is difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study with respect to the uncertain model inputs of two classical approaches used to map the evapotranspiration of agroecosystems: (1) a surface energy balance (SEB) model, the Two-Source Energy Balance (TSEB) model, forced with thermal infrared (TIR) data as a proxy for the crop hydric conditions, and (2) a soil–vegetation–atmosphere transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed from a soil water budget. To this end, the models' skill was compared using a large and unique in situ database covering different crops and climate conditions, which was acquired over three experimental sites in southern France and Morocco. On average, the models provide 30 min estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. A sensitivity analysis based on realistic errors aimed to estimate the potential decrease in performance induced by the spatialization process. For the SVAT model, the multi-objective calibration iterative procedure (MCIP) is used to determine and test different sets of parameters. TSEB is run with only one set of parameters and provides acceptable performance for all crop stages apart from the early growing season (LAI < 0.2 m2 m−2) and when hydric stress occurs. An in-depth study on the Priestley–Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partitioning between the sensible and latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8–2 were highlighted under cloudy conditions, which is of particular interest due to the emergence of low-altitude drone acquisition. Under developed vegetation (LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable trade-off for SEtHyS. This study provides some scientific elements regarding the joint use of both approaches and TIR imagery, via the development of new data assimilation and calibration strategies.


1985 ◽  
Vol 6 ◽  
pp. 158-160 ◽  
Author(s):  
Heidi Escher-Vetter

In this paper, some features of energy balance terms will be discussed in respect to the melting capacity available at the surface of Vernagtferner in the Oetztal Alps. The climatic pattern of summer 1982 is described, then the method of calculating individual terms (shortwave and longwave radiation balance, sensible and latent heat flux) from records of radiation, air temperature, humidity and wind. The results of these calculations are discussed for ice, firn and snow areas of the glacier. In particular the relationship between the four terms is shown for 15 July 1982, the day with highest meltwater production in 1982. These values are then compared with the maximum values of the individual terms, showing that the highest meltwater production is caused by the combination of quite high values of the individual terms, but not of the absolutely highest ones. The importance of sensible heat flux for meltwater production in 1982 is discussed: comparison between meltwater production for the whole summer and measured runoff shows reasonable accordance.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260 ◽  
Author(s):  
Xingbing Zhao ◽  
Changwei Liu ◽  
Nan Yang ◽  
Yubin Li

Land surface process observations in the western Tibet Plateau (TP) are limited because of the abominable natural conditions. During the field campaign of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX III), continuous measurements on the four radiation fluxes (downward/upward short/long-wave radiations), three heat fluxes (turbulent sensible/latent heat fluxes and soil heat flux) and also CO2 flux were collected from June 2015 through January 2017 at Shiquanhe (32.50° N, 80.08° E, 4279.3 m above sea level) in the western Tibetan Plateau. Diurnal and seasonal variation characteristics of these surface energy and CO2 fluxes were presented and analyzed in this study. Results show that (1) diurnal variations of the seven energy fluxes were found with different magnitudes, (2) seasonal variations appeared for the seven energy fluxes with their maxima in summer and minima in winter, (3) diurnal and seasonal variations of respiration caused by the biological and chemical processes within the soil were found, and absorption (release) of CO2 around 0.1 mg m−2 s−1 occurred at afternoon of summer (midnight of winter), but the absorption and release generally canceled out from a yearly perspective; and (4) the surface energy balance ratio went through both diurnal and seasonal cycles, and in summer months the slopes of the fitting curve were above 0.6, but in winter months they were around 0.5. Comparing the results of the Shiquanhe site with the central and eastern TP sites, it was found that (1) they all generally had similar seasonal and diurnal variations of the fluxes, (2) caused by the low rainfall quantity, latent heat flux at Shiquanhe (daily daytime mean always less than 90 W m−2) was distinctively smaller than at the central and eastern TP sites during the wet season (generally larger than 100 W m−2), and (3) affected by various factors, the residual energy was comparatively larger at Shiquanhe, which led to a small surface energy balance ratio.


2017 ◽  
Vol 32 (4) ◽  
pp. 691-702 ◽  
Author(s):  
Nehal Laounia ◽  
Hamimed Abderrahmane ◽  
Khaldi Abdelkader ◽  
Souidi Zahira ◽  
Zaagane Mansour

Abstract Monitoring evapotranspiration and surface energy fluxes over a range of spatial and temporal scales is crucial for many agroenvironmental applications. Different remote sensing based energy balance models have been developed, to estimate evapotranspiration at both field and regional scales. In this contribution, METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration), has been applied for the estimation of actual evapotranspiration in the Ghriss plain in Mascara (western Algeria), a semiarid region with heterogeneous surface conditions. Four images acquired during 2001 and 2002 by the Landsat-7 satellite were used. The METRIC model followed an energy balance approach, where evapotranspiration is estimated as the residual term when net radiation, sensible and soil heat fluxes are known. Different moisture indicators derived from the evapotranspiration were then calculated: reference evapotranspiration fraction, Priestley-Taylor parameter and surface resistance to evaporation. The evaluation of evapotranspiration and surface energy fluxes are accurate enough for the spatial variations of evapotranspiration rather satisfactory than sophisticated models without having to introduce an important number of parameters in input with difficult accessibility in routine. In conclusion, the results suggest that METRIC can be considered as an operational approach to predict actual evapotranspiration from agricultural areas having limited amount of ground information.


Sign in / Sign up

Export Citation Format

Share Document