scholarly journals GRACE Improves Seasonal Groundwater Forecast Initialization over the United States

2020 ◽  
Vol 21 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Augusto Getirana ◽  
Matthew Rodell ◽  
Sujay Kumar ◽  
Hiroko Kato Beaudoing ◽  
Kristi Arsenault ◽  
...  

AbstractWe evaluate the impact of Gravity Recovery and Climate Experiment data assimilation (GRACE-DA) on seasonal hydrological forecast initialization over the United States, focusing on groundwater storage. GRACE-based terrestrial water storage (TWS) estimates are assimilated into a land surface model for the 2003–16 period. Three-month hindcast (i.e., forecast of past events) simulations are initialized using states from the reference (no data assimilation) and GRACE-DA runs. Differences between the two initial hydrological condition (IHC) sets are evaluated for two forecast techniques at 305 wells where depth to water table measurements are available. Results show that using GRACE-DA-based IHC improves seasonal groundwater forecast performance in terms of both RMSE and correlation. While most regions show improvement, degradation is common in the High Plains, where withdrawals for irrigation practices affect groundwater variability more strongly than the weather variability, which demonstrates the need for simulating such activities. These findings contribute to recent efforts toward an improved U.S. drought monitoring and forecast system.

Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2008 ◽  
Vol 9 (1) ◽  
pp. 116-131 ◽  
Author(s):  
Bart van den Hurk ◽  
Janneke Ettema ◽  
Pedro Viterbo

Abstract This study aims at stimulating the development of soil moisture data assimilation systems in a direction where they can provide both the necessary control of slow drift in operational NWP applications and support the physical insight in the performance of the land surface component. It addresses four topics concerning the systematic nature of soil moisture data assimilation experiments over Europe during the growing season of 2000 involving the European Centre for Medium-Range Weather Forecasts (ECMWF) model infrastructure. In the first topic the effect of the (spinup related) bias in 40-yr ECMWF Re-Analysis (ERA-40) precipitation on the data assimilation is analyzed. From results averaged over 36 European locations, it appears that about half of the soil moisture increments in the 2000 growing season are attributable to the precipitation bias. A second topic considers a new soil moisture data assimilation system, demonstrated in a coupled single-column model (SCM) setup, where precipitation and radiation are derived from observations instead of from atmospheric model fields. For many of the considered locations in this new system, the accumulated soil moisture increments still exceed the interannual variability estimated from a multiyear offline land surface model run. A third topic examines the soil water budget in response to these systematic increments. For a number of Mediterranean locations the increments successfully increase the surface evaporation, as is expected from the fact that atmospheric moisture deficit information is the key driver of soil moisture adjustment. In many other locations, however, evaporation is constrained by the experimental SCM setup and is hardly affected by the data assimilation. Instead, a major portion of the increments eventually leave the soil as runoff. In the fourth topic observed evaporation is used to evaluate the impact of the data assimilation on the forecast quality. In most cases, the difference between the control and data assimilation runs is considerably smaller than the (positive) difference between any of the simulations and the observations.


2019 ◽  
Vol 20 (8) ◽  
pp. 1511-1531 ◽  
Author(s):  
Jessica M. Erlingis ◽  
Jonathan J. Gourley ◽  
Jeffrey B. Basara

Abstract Backward trajectories were derived from North American Regional Reanalysis data for 19 253 flash flood reports published by the National Weather Service to determine the along-path contribution of the land surface to the moisture budget for flash flood events in the conterminous United States. The impact of land surface interactions was evaluated seasonally and for six regions: the West Coast, Arizona, the Front Range, Flash Flood Alley, the Missouri Valley, and the Appalachians. Parcels were released from locations that were impacted by flash floods and traced backward in time for 120 h. The boundary layer height was used to determine whether moisture increases occurred within the boundary layer or above it. Moisture increases occurring within the boundary layer were attributed to evapotranspiration from the land surface, and surface properties were recorded from an offline run of the Noah land surface model. In general, moisture increases attributed to the land surface were associated with anomalously high surface latent heat fluxes and anomalously low sensible heat fluxes (resulting in a positive anomaly of evaporative fraction) as well as positive anomalies in top-layer soil moisture. Over the ocean, uptakes were associated with positive anomalies in sea surface temperatures, the magnitude of which varies both regionally and seasonally. Major oceanic surface-based source regions of moisture for flash floods in the United States include the Gulf of Mexico and the Gulf of California, while boundary layer moisture increases in the southern plains are attributable in part to interactions between the land surface and the atmosphere.


2020 ◽  
Vol 12 (4) ◽  
pp. 645 ◽  
Author(s):  
Sujay Kumar ◽  
David Mocko ◽  
Carrie Vuyovich ◽  
Christa Peters-Lidard

Surface albedo has a significant impact in determining the amount of available net radiation at the surface and the evolution of surface water and energy budget components. The snow accumulation and timing of melt, in particular, are directly impacted by the changes in land surface albedo. This study presents an evaluation of the impact of assimilating Moderate Resolution Imaging Spectroradiometer (MODIS)-based surface albedo estimates in the Noah multi-parameterization (Noah-MP) land surface model, over the continental US during the time period from 2000 to 2017. The evaluation of simulated snow depth and snow cover fields show that significant improvements from data assimilation (DA) are obtained over the High Plains and parts of the Rocky Mountains. Earlier snowmelt and reduced agreements with reference snow depth measurements, primarily over the Northeast US, are also observed due to albedo DA. Most improvements from assimilation are observed over locations with moderate vegetation and lower elevation. The aggregate impact on evapotranspiration and runoff from assimilation is found to be marginal. This study also evaluates the relative and joint utility of assimilating fractional snow cover and surface albedo measurements. Relative to surface albedo assimilation, fractional snow cover assimilation is found to provide smaller improvements in the simulated snow depth fields. The configuration that jointly assimilates surface albedo and fractional snow cover measurements is found to provide the most beneficial improvements compared to the univariate DA configurations for surface albedo or fractional snow cover. Overall, the study also points to the need for improving the albedo formulations in land surface models and the incorporation of observational uncertainties within albedo DA configurations.


2019 ◽  
Vol 20 (7) ◽  
pp. 1359-1377 ◽  
Author(s):  
Sujay V. Kumar ◽  
David M. Mocko ◽  
Shugong Wang ◽  
Christa D. Peters-Lidard ◽  
Jordan Borak

Abstract Accurate representation of vegetation states is required for the modeling of terrestrial water–energy–carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating remote sensing–based leaf area index (LAI) retrievals over the continental United States in the Noah-MP land surface model, during a time period of 2000–17. The results demonstrate that the assimilation has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotranspiration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in the water and carbon variables are observed over the agricultural areas of the United States, where assimilation improves the representation of vegetation seasonality impacted by cropping schedules. The systematic, added improvements from assimilation in a configuration that employs high-quality boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of vegetation changes.


2010 ◽  
Vol 11 (1) ◽  
pp. 171-184 ◽  
Author(s):  
Mutlu Ozdogan ◽  
Matthew Rodell ◽  
Hiroko Kato Beaudoing ◽  
David L. Toll

Abstract A novel method is introduced for integrating satellite-derived irrigation data and high-resolution crop-type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land–atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here, it is shown that the application of the new irrigation scheme over the continental United States significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In this experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental United States during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W m−2 from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W m−2, 20 W m−2, 5 mm day−1, 0.3 mm day−1, and 100 mm, respectively. These results are highly relevant to continental-to-global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. On the basis of the results presented here, it is expected that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA’s Global Forecast System (GFS).


2006 ◽  
Vol 7 (3) ◽  
pp. 534-547 ◽  
Author(s):  
Ming Pan ◽  
Eric F. Wood

Abstract A procedure is developed to incorporate equality constraints in Kalman filters, including the ensemble Kalman filter (EnKF), and is referred to as the constrained ensemble Kalman filter (CEnKF). The constraint is carried out as a two-step filtering approach, with the first step being the standard (ensemble) Kalman filter. The second step is the constraint step carried out by another Kalman filter that optimally redistributes any imbalance from the first step. The CEnKF is implemented over a 75 000 km2 domain in the southern Great Plains region of the United States, using the terrestrial water balance as the constraint. The observations, consisting of gridded fields of the upper two soil moisture layers from the Oklahoma Mesonet system, Atmospheric Radiation Measurement Program Cloud and Radiation Testbed (ARM-CART) energy balance Bowen ratio (EBBR) latent heat estimates, and U.S. Geological Survey (USGS) streamflow from unregulated basins, are assimilated into the Variable Infiltration Capacity (VIC) land surface model. The water balance was applied at the domain scale, and estimates of the water balance components for the domain are updated from the data assimilation step so as to assure closure.


2020 ◽  
pp. 125744
Author(s):  
Ala Bahrami ◽  
Kalifa Goïta ◽  
Ramata Magagi ◽  
Bruce Davison ◽  
Saman Razavi ◽  
...  

2006 ◽  
Vol 134 (1) ◽  
pp. 113-133 ◽  
Author(s):  
Teddy R. Holt ◽  
Dev Niyogi ◽  
Fei Chen ◽  
Kevin Manning ◽  
Margaret A. LeMone ◽  
...  

Abstract Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land surface model (LSM) initialized using a high-resolution land surface data assimilation system (HRLDAS). Physically consistent surface fields are ensured by an 18-month spinup time for HRLDAS, and physically consistent mesoscale fields are ensured by a 2-day data assimilation spinup for COAMPS. Sensitivity simulations are performed to assess the impact of land–vegetative processes by 1) replacing the Noah LSM with a simple slab soil model (SLAB), 2) adding a photosynthesis, canopy resistance/transpiration scheme [the gas exchange/photosynthesis-based evapotranspiration model (GEM)] to the Noah LSM, and 3) replacing the HRLDAS soil moisture with the National Centers for Environmental Prediction (NCEP) 40-km Eta Data Assimilation (EDAS) operational soil fields. CONTROL, EDAS, and GEM develop convection along the dryline and frontal boundaries 2–3 h after observed, with synoptic-scale forcing determining the location and timing. SLAB convection along the boundaries is further delayed, indicating that detailed surface parameterization is necessary for a realistic model forecast. EDAS soils are generally drier and warmer than HRLDAS, resulting in more extensive development of convection along the dryline than for CONTROL. The inclusion of photosynthesis-based evapotranspiration (GEM) improves predictive skill for both air temperature and moisture. Biases in soil moisture and temperature (as well as air temperature and moisture during the prefrontal period) are larger for EDAS than HRLDAS, indicating land–vegetative processes in EDAS are forced by anomalously warmer and drier conditions than observed. Of the four simulations, the errors in SLAB predictions of these quantities are generally the largest. By adding a sophisticated transpiration model, the atmospheric model is able to better respond to the more detailed representation of soil moisture and temperature. The sensitivity of the synoptically forced convection to soil and vegetative processes including transpiration indicates that detailed representation of land surface processes should be included in weather forecasting models, particularly for severe storm forecasting where local-scale information is important.


2020 ◽  
Vol 12 (12) ◽  
pp. 2020 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Clément Albergel ◽  
Jean-Christophe Calvet

LDAS-Monde is a global land data assimilation system (LDAS) developed by Centre National de Recherches Météorologiques (CNRM) to monitor land surface variables (LSV) at various scales, from regional to global. With LDAS-Monde, it is possible to jointly assimilate satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the interactions between soil biosphere and atmosphere (ISBA) land surface model (LSM) in order to analyze the soil moisture profile together with vegetation biomass. In this study, we investigate LDAS-Monde’s ability to predict LSV states up to two weeks in the future using atmospheric forecasts. In particular, the impact of the initialization, and the evolution of the forecasted variables in the LSM are addressed. LDAS-Monde is an offline system normally driven by atmospheric reanalysis, but in this study is forced by atmospheric forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 2017–2018 period over the contiguous United States (CONUS) at a 0.2° × 0.2° spatial resolution. These LSV forecasts are initialized either by the model alone (LDAS-Monde open-loop, without assimilation) or by the analysis (assimilation of SSM and LAI). These two forecasts are then evaluated using satellite-derived observations of SSM and LAI, evapotranspiration (ET) estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and ET), LDAS-Monde provides reasonably accurate and consistent predictions two weeks in advance. Additionally, the initial conditions after assimilation are shown to make a positive impact with respect to LAI and ET. This impact persists in time for these two vegetation-related variables. Many model variables, such as SSM, root zone soil moisture (RZSM), LAI, ET, and drainage, remain relatively consistent as the forecast lead time increases, while runoff is highly variable.


Sign in / Sign up

Export Citation Format

Share Document