scholarly journals Cross-Scale Precipitation Variability in a Semiarid Catchment Area on the Western Slopes of the Central Andes

2018 ◽  
Vol 57 (3) ◽  
pp. 675-694 ◽  
Author(s):  
Katja Trachte ◽  
Jochen Seidel ◽  
Rafael Figueroa ◽  
Marco Otto ◽  
Joerg Bendix

AbstractSpatiotemporal precipitation patterns were investigated on the western slopes of the central Andes Mountains by applying EOF and cluster analysis as well as the Weather Research and Forecasting (WRF) Model. In the semiarid catchment area in the highlands of Lima, Peru, the precipitation is assumed to be a cross-scale interplay of large-scale dynamics, varying sea surface temperatures (SSTs), and breeze-dominated slope flows. The EOF analysis was used to encompass and elucidate the upper-level circulation patterns dominating the transport of moisture. To delineate local precipitation regimes, a partitioning cluster analysis was carried out, which additionally should illustrate local effects such as the altitudinal gradient of the Andes. The results demonstrated that especially during the transition to the dry season, synoptic-scale circulation aloft controls the precipitation (correlation coefficients between 0.6 and 0.9), whereas in the remaining seasons the slope breezes due to the altitudinal gradient mainly determine the precipitation behavior. Further analysis with regard to the spatiotemporal precipitation variability revealed an inversion of the precipitation distribution along the elevational gradient within the study area, mainly during February (29%) and March (35%), that showed correlations with coastal SST patterns ranging between 0.56 and 0.67. WRF simulations of the underlying mechanisms disclosed that the large-scale circulation influences the thermally induced upslope flows while the strength of southeastern low-level winds related to the coastal SSTs caused a blocking of easterlies in the middle troposphere through a reduced anticyclonic effect. This interplay enables the generation of precipitation in the usually drier environment at lower elevations, which leads to a decrease in rainfall with increasing elevation.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2018 ◽  
Vol 146 (12) ◽  
pp. 4279-4302 ◽  
Author(s):  
Alex M. Kowaleski ◽  
Jenni L. Evans

Abstract An ensemble of 72 Weather Research and Forecasting (WRF) Model simulations is evaluated to examine the relationship between the track of Hurricane Sandy (2012) and its structural evolution. Initial and boundary conditions are obtained from ECMWF and GEFS ensemble forecasts initialized at 0000 UTC 25 October. The 5-day WRF simulations are initialized at 0000 UTC 27 October, 48 h into the global model forecasts. Tracks and cyclone phase space (CPS) paths from the 72 simulations are partitioned into 6 clusters using regression mixture models; results from the 4 most populous track clusters are examined. The four analyzed clusters vary in mean landfall location from southern New Jersey to Maine. Extratropical transition timing is the clearest difference among clusters; more eastward clusters show later Sandy–midlatitude trough interaction, warm seclusion formation, and extratropical transition completion. However, the intercluster variability is much smaller when examined relative to the landfall time of each simulation. In each cluster, a short-lived warm seclusion forms and contracts through landfall while lower-tropospheric potential vorticity concentrates at small radii. Despite the large-scale similarity among the clusters, relevant intercluster differences in landfall-relative extratropical transition are observed. In the easternmost cluster the Sandy–trough interaction is least intense and the warm seclusion decays the most by landfall. In the second most eastward cluster Sandy retains the most intact warm seclusion at landfall because of a slightly later (relative to landfall) and weaker trough interaction compared to the two most westward clusters. Nevertheless, the remarkably similar large-scale evolution of Sandy among the four clusters indicates the high predictability of Sandy’s warm seclusion extratropical transition before landfall.


2019 ◽  
Vol 102 (1) ◽  
pp. 255-261 ◽  
Author(s):  
Ji-cai Fan ◽  
Quan Jin ◽  
Hua-li He ◽  
Ren Ren ◽  
Shu-ting Wang

Abstract Background: Phthalate esters (PAEs) are a group of chemical compounds widely used as plasticizers to increase the flexibility of plastics that are used in the manufacturing of kitchen utensils and food containers. Objective: In this study, a simple, rapid, and sensitive method for the determination of 20 PAEs in different kinds of food packaging materials has been developed. Methods: Samples injected with five internal standards were extracted with acetonitrile saturated with n-hexane and then detected by GC-MS/MS without a purification step. Results: The standard calibration curves were linear for all analytes over the concentration range of 5–500 μg/L, and the correlation coefficients ranged from 0.9913 to 0.9999. The LODs and LOQs were in the ranges of 1.7–62.5 and 5.5–208.3 μg/kg, respectively. The accuracy of this method was evaluated by measuring the recovery from spiked samples. The recoveries of all 20 phthalates from samples spiked at three different concentrations were measured, and the recovery was in the range of 82.1–110.8% and the relative standard deviation range of recovery result (n = 6) was 0.3–9.7%. Conclusions: The method presented here is simple, rapid, and sensitive and can be applied to large-scale detection of PAEs in plastic materials. Highlights: Instead of only one solvent, acetonitrile saturated with n-hexane was used as the extraction solvent. Samples were pretreated without a purification step. Five internal standards were used for quantitative determination.


2001 ◽  
Vol 23 (1) ◽  
pp. 1-22 ◽  
Author(s):  
C.K. John Wang ◽  
Stuart J.H. Biddle

A great deal has been written about the motivation of young people in physical activity, and the determinants of activity for this age group have been identified as a research priority. Despite this, there are few large-scale studies identifying “types” or “clusters” of young people based on their scores on validated motivation inventories. This study reports the results of a cluster analysis of a large national sample (n = 2,510) of 12- to 15-year-olds using contemporary approaches to physical activity motivation: achievement goal orientations, self-determination theory (including amotivation), the nature of athletic ability beliefs, and perceived competence. Five meaningful clusters were identified reflecting two highly motivated and two less well-motivated clusters, as well as a clearly amotivated cluster. Groupings were validated by investigating differences in physical activity participation and perceptions of physical self-worth. Some clusters reflected age and gender differences. The results provide valuable information for likely strategies to promote physical activity in young people.


AbstractPrecipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard Profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


2017 ◽  
Vol 161 ◽  
pp. 191-212
Author(s):  
Trambak Banerjee ◽  
Gourab Mukherjee ◽  
Peter Radchenko

2002 ◽  
Vol 283 (3) ◽  
pp. F388-F398 ◽  
Author(s):  
Wei Tian ◽  
David M. Cohen

Although urea is considered to be a cell stressor even in renal medullary cells perpetually exposed to this solute in vivo by virtue of the renal concentrating mechanism, aspects of urea signaling resemble that of a peptide mitogen. Urea was compared with epidermal growth factor and hypertonic NaCl or hypertonic mannitol using a large-scale expression array-based approach. The expression profile in response to urea stress more closely resembled that of EGF treatment than hypertonic stress, as determined by hierarchical cluster analysis; the effect of urea+NaCl was equidistant from that of either solute applied individually. Among the most highly urea- and hypertonicity-responsive transcripts were genes that had previously been shown to be responsive to these solutes, validating this approach. Increased expression of the activating transcription factor 3 by urea was newly detected via expression array and confirmed via immunoblot analysis. Earlier, we noted an abrogation of tonicity-dependent gene regulation by urea, primarily in a transient transfection-based model (Tian W and Cohen DM. Am J Physiol Renal Physiol 280: F904–F912, 2001). Here we applied K-means cluster analysis to demonstrate that the genes most profoundly up- or downregulated by hypertonic stress were partially restored toward basal levels in the presence of urea pretreatment. These global expression data are consistent with our earlier biochemical studies suggesting that urea affords cytoprotection in this context. In the aggregate, these data strongly support the hypothesis that the urea effect in renal medullary cells resembles that of a peptide mitogen in terms of the adaptive program of gene expression and in terms of cytoprotection from hypertonicity.


Sign in / Sign up

Export Citation Format

Share Document