An Effective, Economic, Aspirated Radiation Shield for Air Temperature Observations and Its Spatial Gradients

2013 ◽  
Vol 30 (3) ◽  
pp. 526-537 ◽  
Author(s):  
Christoph K. Thomas ◽  
Alexander R. Smoot

Abstract This paper presents the design and evaluates the performance of a double-walled electrically aspirated radiation shield for thermometers measuring air temperature and its gradients in the atmospheric surface layer. Tests were performed to quantify its solar radiation error and wake production, and to characterize the observer effect of the forced aspiration on vertical temperature gradients in the calm and stable boundary layer. Construction requirements were to design a unit that uses inexpensive off-the-shelf components, to assemble easily, to facilitate reconfiguration to accommodate various sensors, and to reduce power consumption with the goal of reducing costs and enabling use in sensor networks in remote locations. The custom-aspirated shield was evaluated in reference to a triple-walled commercially available model and subjected to rigorous testing in a wind tunnel and field experiments. The relative radiation error of air temperature measurements in the custom-aspirated shield was equal to or smaller than that in the reference shield within ±0.08 K for solar irradiances ≥1000 W m−2 and calm winds. At night, thermal imagery revealed no significant differences in surface temperatures of both shields and the air temperature. Both shields produced significant wake within a ±30° sector of incident flow. Even for weak flows ≤0.7 m s−1, higher-order moments were increased by a factor of 3, while the mean airflow speed was reduced by up to 30% compared to uncontaminated directions. Careful inspection of the spatiotemporal dynamics of air temperatures in a vertical profile showed negligible impact of the forced aspiration on the finescale structure of the observations for the nocturnal and transitional calm surface layers.

2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 292 ◽  
Author(s):  
Ana Oliveira ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Samuel Niza ◽  
Amílcar Soares

Lisbon is a European Mediterranean city, greatly exposed to heatwaves (HW), according to recent trends and climate change prospects. Considering the Atlantic influence, air temperature observations from Lisbon’s mesoscale network are used to investigate the interactions between background weather and the urban thermal signal (UTS) in summer. Days are classified according to the prevailing regional wind direction, and hourly UTS is compared between HW and non-HW conditions. Northern-wind days predominate, revealing greater maximum air temperatures (up to 40 °C) and greater thermal amplitudes (approximately 10 °C), and account for 37 out of 49 HW days; southern-wind days have milder temperatures, and no HWs occur. Results show that the wind direction groups are significantly different. While southern-wind days have minor UTS variations, northern-wind days have a consistent UTS daily cycle: a diurnal urban cooling island (UCI) (often lower than –1.0 °C), a late afternoon peak urban heat island (UHI) (occasionally surpassing 4.0 °C), and a stable nocturnal UHI (1.5 °C median intensity). UHI/UCI intensities are not significantly different between HW and non-HW conditions, although the synoptic influence is noted. Results indicate that, in Lisbon, the UHI intensity does not increase during HW events, although it is significantly affected by wind. As such, local climate change adaptation strategies must be based on scenarios that account for the synergies between potential changes in regional air temperature and wind.


2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1377
Author(s):  
Weifang Shi ◽  
Nan Wang ◽  
Aixuan Xin ◽  
Linglan Liu ◽  
Jiaqi Hou ◽  
...  

Mitigating high air temperatures and heat waves is vital for decreasing air pollution and protecting public health. To improve understanding of microscale urban air temperature variation, this paper performed measurements of air temperature and relative humidity in a field of Wuhan City in the afternoon of hot summer days, and used path analysis and genetic support vector regression (SVR) to quantify the independent influences of land cover and humidity on air temperature variation. The path analysis shows that most effect of the land cover is mediated through relative humidity difference, more than four times as much as the direct effect, and that the direct effect of relative humidity difference is nearly six times that of land cover, even larger than the total effect of the land cover. The SVR simulation illustrates that land cover and relative humidity independently contribute 16.3% and 83.7%, on average, to the rise of the air temperature over the land without vegetation in the study site. An alternative strategy of increasing the humidity artificially is proposed to reduce high air temperatures in urban areas. The study would provide scientific support for the regulation of the microclimate and the mitigation of the high air temperature in urban areas.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vyacheslav N. Baklagin

The paper shows the changes in the dates (complete freeze-up, ±5 days/°C and complete ice clearance, ±3 days/°C) of the ice regime in Lake Onego depending on changes in average air temperature within the preceding two-month periods (autumn and spring). The regression equations for their calculation based on previous three- and four-month periods according to the 2000-2018 data are also provided. Indicative dates of ice regime based on accumulated air temperatures within the ice period of Lake Onego were also established (early formation of ice phenomena, complete freeze-up phase, beginning of the break-up phase and complete ice clearance). Together with the data on expected air temperature above the lake’s surface, these dependencies enable us to predict the indicative dates of the ice regime.


Author(s):  
Siddharth Bhopte ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Bahgat Sammakia

In a typical raised floor data center with alternating hot and cold aisles, air enters the front of each rack over the entire height of the rack. Since the heat loads of data processing equipment continues to increase at a rapid rate, it is a challenge to maintain the temperature within the requirements as stated for all the racks within the data center. A facility manager has discretion in deciding the data center room layout, but a wrong decision will eventually lead to equipment failure. There are many complex decisions to be made early in the design as the data center evolves. Challenges occur such as optimizing the raised floor plenum, floor tile placement, minimizing the data center local hot spots etc. These adjustments in configuration affects rack inlet air temperatures which is one of the important key to effective thermal management. In this paper, a raised floor data center with 4.5 kW racks is considered. There are four rows of racks with alternating hot and cold aisle arrangement. Each row has six racks installed. Two CRAC units supply chilled air to the data center through the pressurized plenum. Effect of plenum depth, floor tile placement and ceiling height on the rack inlet air temperature is discussed. Plots will be presented over the defined range. Now a multi-variable approach to optimize data center room layout to minimize the rack inlet air temperature is proposed. Significant improvement over the initial model is shown by using multi-variable design optimization approach. The results of multi-variable design optimization are used to present guidelines for optimal data center performance.


2008 ◽  
Vol 21 (22) ◽  
pp. 5807-5819 ◽  
Author(s):  
Hengchun Ye

Abstract Potential benefits or disadvantages of increasing precipitation in high-latitude regions under a warming climate are dependent on how and in what form the precipitation occurs. Precipitation frequency and type are equally as important as quantity and intensity to understanding the seasonality of hydrological cycles and the health of the ecosystem in high-latitude regions. This study uses daily historical synoptic observation records during 1936–90 over the former USSR to reveal associations between the frequency of precipitation types (rainfall, snowfall, mixed solid and liquid, and wet days of all types) and surface air temperatures to determine potential changes in precipitation characteristics under a warming climate. Results from this particular study show that the frequency of precipitation of all types generally increases with air temperature during winter. However, both solid and liquid precipitation days predominantly decrease with air temperature during spring with a reduction in snowfall days being most significant. During autumn, snowfall days decrease while rainfall days increase resulting in overall decreases in wet days as air temperature increases. The data also reveal that, as snowfall days increase in relationship to increasing air temperatures, this increase may level out or even decrease as mean surface air temperature exceeds −8°C in winter. In spring and autumn, increasing rainfall days switch to decreasing when the mean surface air temperature goes above 6°C. The conclusion of this study is that changes in the frequency of precipitation types are highly dependent on the location’s air temperature and that threshold temperatures exist beyond which changes in an opposite direction occur.


Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


1975 ◽  
Vol 39 (1) ◽  
pp. 93-102 ◽  
Author(s):  
R. M. Smith ◽  
J. M. Hanna

Fourteen male subjects with unweighted mean skinfolds (MSF) of 10.23 mm underwent several 3-h exposures to cold water and air of similar velocities in order to compare by indirect calorimetry the rate of heat loss in water and air. Measurements of heat loss (excluding the head) at each air temperature (Ta = 25, 20, 10 degrees C) and water temperature (Tw = 29–33 degrees C) were used in a linear approximation of overall heat transfer from body core (Tre) to air or water. We found the lower critical air and water temperatures to fall as a negative linear function of MSF. The slope of these lines was not significantly different in air and water with a mean of minus 0.237 degrees C/mm MSF. Overall heat conductance was 3.34 times greater in water. However, this value was not fixed but varied as an inverse curvilinear function of MSF. Thus, equivalent water-air temperatures also varied as a function of MSF. Between limits of 100–250% of resting heat loss the followingrelationships between MSF and equivalent water-air temperatures were found (see article).


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 402 ◽  
Author(s):  
Xiaoxue Wang ◽  
Yuguo Li ◽  
Xinyan Yang ◽  
Pak Chan ◽  
Janet Nichol ◽  
...  

The street thermal environment is important for thermal comfort, urban climate and pollutant dispersion. A 24-h vehicle traverse study was conducted over the Kowloon Peninsula of Hong Kong in summer, with each measurement period consisting of 2–3 full days. The data covered a total of 158 loops in 198 h along the route on sunny days. The measured data were averaged by three methods (direct average, FFT filter and interpolated by the piecewise cubic Hermite interpolation). The average street air temperatures were found to be 1–3 °C higher than those recorded at nearby fixed weather stations. The street warming phenomenon observed in the study has substantial implications as usually urban heat island (UHI) intensity is estimated from measurement at fixed weather stations, and therefore the UHI intensity in the built areas of the city may have been underestimated. This significant difference is of interest for studies on outdoor air temperature, thermal comfort, urban environment and pollutant dispersion. The differences were simulated by an improved one-dimensional temperature model (ZERO-CAT) using different urban morphology parameters. The model can correct the underestimation of street air temperature. Further sensitivity studies show that the building arrangement in the daytime and nighttime plays different roles for air temperature in the street. City designers can choose different parameters based on their purpose.


Sign in / Sign up

Export Citation Format

Share Document