scholarly journals Structure and Motion of Severe-Wind-Producing Mesoscale Convective Systems and Derechos in Relation to the Mean Wind

2017 ◽  
Vol 32 (2) ◽  
pp. 423-439 ◽  
Author(s):  
Matthew A. Campbell ◽  
Ariel E. Cohen ◽  
Michael C. Coniglio ◽  
Andrew R. Dean ◽  
Stephen F. Corfidi ◽  
...  

Abstract The goal of this study is to document differences in the convective structure and motion of long-track, severe-wind-producing MCSs from short-track severe-wind-producing MCSs in relation to the mean wind. An ancillary goal is to determine if these differences are large enough that some criterion for MCS motion relative to the mean wind could be used in future definitions of “derechos.” Results confirm past investigations that well-organized MCSs, including those that produce derechos, tend to move faster than the mean wind, exhibiting a significantly larger degree of propagation (component of MCS motion in addition to the component contributed by the mean flow). Furthermore, well-organized systems that produce shorter-track swaths of damaging winds likewise tend to move faster than the mean wind with a significant propagation component along the mean wind. Therefore, propagation in the direction of the mean wind is not necessarily a characteristic that can be used to distinguish derechos from nonderechos. However, there is some indication that long-track damaging wind events that occur without large-scale or persistent bow echoes and mesoscale convective vortices (MCVs) require a strong propagation component along the mean wind direction to become long lived. Overall, however, there does not appear to be enough separation in the motion characteristics among the MCS types to warrant the inclusion of a mean-wind criterion into the definition of a derecho at this time.

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 503 ◽  
Author(s):  
Karsten Peters ◽  
Cathy Hohenegger ◽  
Daniel Klocke

Representing mesoscale convective systems (MCSs) and their multi-scale interaction with the large-scale atmospheric dynamics is still a major challenge in state-of-the-art global numerical weather prediction (NWP) models. This results in potentially defective forecasts of synoptic-scale dynamics in regions of high MCS activity. Here, we quantify this error by comparing simulations performed with a very large-domain, convection-permitting NWP model to two operational global NWP models relying on parameterized convection. We use one month’s worth of daily forecasts over Western Africa and focus on land regions only. The convection-permitting model matches remarkably well the statistics of westward-propagating MCSs compared to observations, while the convection-parameterizing NWP models misrepresent them. The difference in the representation of MCSs in the different models leads to measurably different synoptic-scale forecast evolution as visible in the wind fields at both 850 and 650 hPa, resulting in forecast differences compared to the operational global NWP models. This is quantified by computing the correlation between the differences and the number of MCSs: the larger the number of MCSs, the larger the difference. This fits the expectation from theory on MCS–mean flow interaction. Here, we show that this effect is strong enough to affect daily limited-area forecasts on very large domains.


Author(s):  
Justin G. Gibbs

Tornadoes produced by quasi-linear convective systems (QLCS) present a significant challenge to National Weather Service warning operations. Given the speed and scale at which they develop, different methods for tornado warning decision making are required than what traditionally are used for supercell storms. This study evaluates the skill of one of those techniques—the so-called three-ingredients method—and produces new approaches. The three-ingredients method is found to be reasonably skillful at short lead times, particularly for systems that are clearly linear. From the concepts and science of the three-ingredients method, several new combinations of environmental and radar parameters emerge that appear slightly more skillful, and may prove easier to execute in real time. Similar skill between the emerging methods provides the forecaster with options for what might work best in any given scenario. A moderate positive correlation with overall wind speed with some radar and environmental variables also is identified. Additionally, mesoscale convective vortices and supercell-like features in QLCS are found to produce tornadoes at a much higher rate than purely linear systems.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Author(s):  
Susanne Horn ◽  
Peter J. Schmid ◽  
Jonathan M. Aurnou

Abstract The large-scale circulation (LSC) is the most fundamental turbulent coherent flow structure in Rayleigh-B\'enard convection. Further, LSCs provide the foundation upon which superstructures, the largest observable features in convective systems, are formed. In confined cylindrical geometries with diameter-to-height aspect ratios of Γ ≅ 1, LSC dynamics are known to be governed by a quasi-two-dimensional, coupled horizontal sloshing and torsional (ST) oscillatory mode. In contrast, in Γ ≥ √2 cylinders, a three-dimensional jump rope vortex (JRV) motion dominates the LSC dynamics. Here, we use dynamic mode decomposition (DMD) on direct numerical simulation data of liquid metal to show that both types of modes co-exist in Γ = 1 and Γ = 2 cylinders but with opposite dynamical importance. Furthermore, with this analysis, we demonstrate that ST oscillations originate from a tilted elliptical mean flow superposed with a symmetric higher order mode, which is connected to the four rolls in the plane perpendicular to the LSC in Γ = 1 tanks.


Author(s):  
Sharon E. Nicholson ◽  
Douglas Klotter ◽  
Adam T. Hartman

AbstractThis article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 827 ◽  
pp. 250-284 ◽  
Author(s):  
Douglas W. Carter ◽  
Filippo Coletti

We experimentally investigate scale-to-scale anisotropy from the integral to the dissipative scales in homogeneous turbulence. We employ an apparatus in which two facing arrays of randomly actuated air jets generate turbulence with negligible mean flow and shear, over a volume several times larger than the energy-containing eddy size. The Reynolds number based on the Taylor microscale is varied in the range$Re_{\unicode[STIX]{x1D706}}\approx 300{-}500$, while the axial-to-radial ratio of the root mean square velocity fluctuations ranges between 1.38 and 1.72. Two velocity components are measured by particle image velocimetry at varying resolutions, capturing from the integral to the Kolmogorov scales and yielding statistics up to sixth order. Over the inertial range, the scaling exponents of the velocity structure functions are found to differ not only between the longitudinal and transverse components, but also between the axial and radial directions of separation. At the dissipative scales, the moments of the velocity gradients indicate that departure from isotropy is, at the present Reynolds numbers, significant and more pronounced for stronger large-scale anisotropy. The generalized flatness factors of the longitudinal velocity differences tend towards isotropy as the separation is reduced from the inertial to the near-dissipative scales (down to about$10\unicode[STIX]{x1D702}$,$\unicode[STIX]{x1D702}$being the Kolmogorov length), but become more anisotropic for even smaller scales which are characterized by high intermittency. At the large scales, the direction of turbulence forcing is associated with a larger integral length, defined as the distance over which the velocity component in a given direction is spatially correlated. Because of anisotropy, the definition of the integral length is not trivial and may lead to dissimilar conclusions on the qualitative behaviour of the large scales and on the quantitative values of the normalized dissipation. Alternative definitions of these quantities are proposed to account for the anisotropy. Overall, these results highlight the importance of evaluating both the different velocity components and the different spatial directions across all scales of the flow.


Author(s):  
Huixuan Wu ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A series of high resolution planar particle image velocimetry measurements performed in a waterjet pump rotor reveal the inner structure of the tip leakage vortex (TLV) which dominates the entire flow field in the tip region. Turbulence generated by interactions among the TLV, the shear layer that develops as the backward leakage flow emerges from the tip clearance as a “wall jet”, the passage flow, and the endwall is highly inhomogeneous and anisotropic. We examine this turbulence in both RANS and LES modelling contexts. Spatially non-uniform distributions of Reynolds stress components are explained in terms of the local mean strain field and associated turbulence production. Characteristic length scales are also inferred from spectral analysis. Spatial filtering of instantaneous data enables the calculation of subgrid scale (SGS) stresses, along with the SGS energy flux (dissipation). The data show that the SGS energy flux differs from the turbulence production rate both in trends and magnitude. The latter is dominated by energy flux from the mean flow to the large scale turbulence, which is resolved in LES, whereas the former is dominated by energy flux from the mean flow to the SGS turbulence. The SGS dissipation rate is also used for calculating the static and dynamic Smagorinsky coefficients, the latter involving filtering at multiple scales; both vary substantially in the tip region, and neither is equal to values obtained in isotropic turbulence.


2013 ◽  
Vol 70 (2) ◽  
pp. 465-486 ◽  
Author(s):  
Jian Yuan ◽  
Robert A. Houze

Abstract In the Indo-Pacific region, mesoscale convective systems (MCSs) occur in a pattern consistent with the eastward propagation of the large-scale convective envelope of the Madden–Julian oscillation (MJO). MCSs are major contributors to the total precipitation. Over the open ocean they tend to be merged or connected systems, while over the Maritime Continent area they tend to be separated or discrete. Over all regions affected by the MJO, connected systems increase in frequency during the active phase of the MJO. Characteristics of each type of MCS (separated or connected) do not vary much over MJO-affected regions. However, separated and connected MCSs differ in structure from each other. Connected MCSs have a larger size and produce less but colder-topped anvil cloud. For both connected and separated MCSs, larger systems tend to have colder cloud tops and less warmer-topped anvil cloud. The maximum height of MCS precipitating cores varies only slightly, and the variation is related to sea surface temperature. Enhanced large-scale convection, greater frequency of occurrence of connected MCSs, and increased midtroposphere moisture coincide, regardless of the region, season, or large-scale conditions (such as the concurrent phase of the MJO), suggesting that the coexistence of these phenomena is likely the nature of deep convection in this region. The increase of midtroposphere moisture observed in all convective regimes during large-scale convectively active phases suggests that the source of midtroposphere moisture is not local or instantaneous and that the accumulation of midtroposphere moisture over MJO-affected regions needs to be better understood.


2014 ◽  
Vol 29 (spe) ◽  
pp. 41-59 ◽  
Author(s):  
Wanda Maria do Nascimento Ribeiro ◽  
José Ricardo Santos Souza ◽  
Márcio Nirlando Gomes Lopes ◽  
Renata Kelen Cardoso Câmara ◽  
Edson José Paulino Rocha ◽  
...  

CG Lightning flashes events monitored by a LDN of the Amazon Protection System, which included 12 LPATS IV VAISALA sensors distributed over eastern Amazonia, were analyzed during four severe rainstorm occurrences in Belem-PA-Brazil, in the 2006-2007 period. These selected case studies referred to rainfall events, which produced more than 25 mm/hour, or more than 40 mm/ 2 hours of precipitation rate totals, registered by a tipping bucket automatic high-resolution rain gauge, located at 1º 47' 53" S and 48º 30' 16" W. Centered at this location, a 30 ,10 and 5 km radius circles were drawn by means of a geographic information system, and the data from lightning occurrences within this larger area, were set apart for analysis. During these severe storms the CG lightning events, occurred almost randomly over the surrounding defined circle, previously covered by mesoscale convective systems, for all cases studied. This work also showed that the interaction between large-scale and mesoscale weather conditions have a major influence on the intensity of the storms studied cases. In addition to the enhancement of the lightning and precipitation rates, the electric activity within the larger circles can precede the rainfall at central point of the areas


Sign in / Sign up

Export Citation Format

Share Document