scholarly journals Evaluation of Rainfall Forecasts with Heavy Rain Types in the High-Resolution Unified Model over South Korea

2019 ◽  
Vol 34 (5) ◽  
pp. 1277-1293 ◽  
Author(s):  
Hwan-Jin Song ◽  
Byunghwan Lim ◽  
Sangwon Joo

Abstract Heavy rainfall events account for most socioeconomic damages caused by natural disasters in South Korea. However, the microphysical understanding of heavy rain is still lacking, leading to uncertainties in quantitative rainfall prediction. This study is aimed at evaluating rainfall forecasts in the Local Data Assimilation and Prediction System (LDAPS), a high-resolution configuration of the Unified Model over the Korean Peninsula. The rainfall of LDAPS forecasts was evaluated with observations based on two types of heavy rain events classified from K-means clustering for the relationship between surface rainfall intensity and cloud-top height. LDAPS forecasts were characterized by more heavy rain cases with high cloud-top heights (cold-type heavy rain) in contrast to observations showing frequent moderate-intensity rain systems with relatively lower cloud-top heights (warm-type heavy rain) over South Korea. The observed cold-type and warm-type events accounted for 32.7% and 67.3% of total rainfall, whereas LDAPS forecasts accounted for 65.3% and 34.7%, respectively. This indicates severe overestimation and underestimation of total rainfall for the cold-type and warm-type forecast events, respectively. The overestimation of cold-type heavy rainfall was mainly due to its frequent occurrence, whereas the underestimation of warm-type heavy rainfall was affected by both its low occurrence and weak intensity. The rainfall forecast skill for the warm-type events was much lower than for the cold-type events, due to the lower rainfall intensity and smaller rain area of the warm-type. Therefore, cloud parameterizations for warm-type heavy rain should be improved to enhance rainfall forecasts over the Korean Peninsula.

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2268
Author(s):  
Wenbin Ding ◽  
Fei Wang ◽  
Kai Jin ◽  
Jianqiao Han ◽  
Qiang Yu ◽  
...  

The magnitude and spatiotemporal distribution of precipitation are the main drivers of hydrologic and agricultural processes in soil moisture, runoff generation, soil erosion, vegetation growth and agriculture activities on the Loess Plateau (LP). This study detects the spatiotemporal variations of individual rainfall events during a rainy season (RS) from May to September based on the hourly precipitation data measured at 87 stations on the LP from 1983 to 2012. The incidence and contribution rates were calculated for all classes of rainfall duration and intensity to identify the dominant contribution to the rainfall amount and frequency variations. The trend rates of regional mean annual total rainfall amount (ATR) and annual mean rainfall intensity (ARI) were 0.43 mm/year and 0.002 mm/h/year in the RS for 1983–2012, respectively. However, the regional mean annual total rainfall frequency (ARF) and rainfall events (ATE) were −0.27 h/year and −0.11 times/year, respectively. In terms of spatial patterns, an increase in ATR appeared in most areas except for the southwest, while the ARI increased throughout the study region, with particularly higher values in the northwest and southeast. Areas of decreasing ARF occurred mainly in the northwest and central south of the LP, while ATE was found in most areas except for the northeast. Short-duration (≤6 h) and light rainfall events occurred mostly on the LP, accounting for 69.89% and 72.48% of total rainfall events, respectively. Long-duration (≥7 h) and moderate rainfall events contributed to the total rainfall amount by 70.64% and 66.73% of the total rainfall amount, respectively. Rainfall frequency contributed the most to the variations of rainfall amount for light and moderate rainfall events, while rainfall intensity played an important role in heavy rainfall and rainstorms. The variation in rainfall frequency for moderate rainfall, heavy rainfall, and rainstorms is mainly affected by rainfall duration, while rainfall event was identified as a critical factor for light rainfall. The characteristics in rainfall variations on the Loess Plateau revealed in this study can provide useful information for sustainable water resources management and plans.


2020 ◽  
Vol 11 (1) ◽  
pp. 43-60
Author(s):  
Md Salman Khan ◽  
MM Alam

In this research the Advanced Research WRF (ARW) model v3.8.1 has been used to simulate the rainfall of May 2015 all over Bangladesh. The model was configured in nested domain with 18 and 6 km horizontal grid spacing with 100 × 96 and 103 × 127 grids in the east-west and north-south directions, respectively with 30 vertical levels. The Lin et al., WSM6, Thomson, Morrison Double-Moment (M-2Mom), Stony Brook University (SBU), and WDM6 microphysics schemes coupling with Kain-Fritsch (KF) cumulus parameterization (CP) scheme have been used to simulate the monthly total rainfall, heavy rainfall, monthly rainy days and heavy rainy days for the month of May 2015 at all meteorological stations of Bangladesh. The simulated results are compared with the observed results of 33 meteorological stations of Bangladesh Meteorological Department (BMD) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) output. Relative standard deviation of all observed, PERSIANN and model simulated parameters have been analyzed and compared. The maximum monthly observed rain in May 2015 at Sylhet was 752 mm but WSM6, M-2Mom and WDM6 schemes have simulated 831, 788 and 742 mm for day 1 prediction; WSM6, WDM6 and SBU-Lin schemes have simulated 757, 916 and 981 mm for day 2 prediction and WSM6 and WDM6 schemes have simulated 741 and 925 mm for day 3 prediction, respectively and all other MPs have simulated much higher rainfall at domain (D1). The WDM6, M-2Mom and Lin et al. schemes have simulated 744, 807 and 923 mm for day 1 prediction, WSM6 and WDM6 schemes have simulated 714 and 877 mm for day 2 predictions and WSM6, SBU-Lin and Lin et al. schemes have simulated 802 and 913 and 998 mm, respectively for day 3 predictions at domain (D2). The relative standard deviation (RSD) has minimum at D1 and D2 for WDM6 scheme for day 1 prediction and WSM6 scheme for day 2 and day 3 predictions for the monthly total rainfall and heavy rainfall of May 2015. The results suggest that as the forecast time increased the amount of total rain and also heavy rain is increased. As a result RSD is also increased for all MPs. WDM6 scheme gives the better performance of rainfall and rainy days all over the country. Journal of Engineering Science 11(1), 2020, 43-60


2013 ◽  
Vol 141 (11) ◽  
pp. 3873-3888 ◽  
Author(s):  
B. J. Sohn ◽  
Geun-Hyeok Ryu ◽  
Hwan-Jin Song ◽  
Mi-Lim Ou

Abstract In contrast to the view that deep convection causes heavy rainfall, Tropical Rainfall Measuring Mission (TRMM) measurements demonstrate that heavy rainfall (ranging from moderate to extreme rain rate) over the Korean peninsula is associated more with low-level clouds (referred to as warm-type clouds in this study) than with conventional deep convective clouds (cold-type clouds). Moreover, it is noted that the low-level warm-type clouds producing heavy rainfall over Korea appear to be closely linked to the atmospheric river, which can form a channel that transports water vapor across the Korean peninsula along the northwestern periphery of the North Pacific high. Much water vapor is transported through the channel and converges on the Korean peninsula when warm-type heavy rain occurs there. It may be possible to produce abundant liquid water owing to the excess of water vapor; this could increase the rate and extent of raindrop growth, primarily below the melting layer, causing heavy rain when these drops fall to the surface. The occurrence of heavy rainfall (also exhibited as medium-depth convection in radar observations over Okinawa, Japan) due to such liquid-water-rich lower warm clouds should induce difficulties in retrieving rainfall from space owing to the lack of scattering-inducing ice crystals over land and the warmer cloud tops. An understanding of the microphysical processes involved in the production of warm-type rain appears to be a prerequisite for better rain retrieval from space and rain forecasting in this wet region.


2013 ◽  
Vol 141 (12) ◽  
pp. 4564-4575 ◽  
Author(s):  
Nathan M. Hitchens ◽  
Harold E. Brooks ◽  
Russ S. Schumacher

Abstract The climatology of heavy rain events from hourly precipitation observations by Brooks and Stensrud is revisited in this study using two high-resolution precipitation datasets that incorporate both gauge observations and radar estimates. Analyses show a seasonal cycle of heavy rain events originating along the Gulf Coast and expanding across the eastern two-thirds of the United States by the summer, comparing well to previous findings. The frequency of extreme events is estimated, and may provide improvements over prior results due to both the increased spatial resolution of these data and improved techniques used in the estimation. The diurnal cycle of heavy rainfall is also examined, showing distinct differences in the strength of the cycle between seasons.


2015 ◽  
Vol 143 (1) ◽  
pp. 363-382 ◽  
Author(s):  
Hwan-Jin Song ◽  
Byung-Ju Sohn

Abstract A total of 10 years (2002–11) of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivities, signaling heavy rainfall (>10 mm h−1), were objectively classified by applying the K-means clustering method in order to obtain typical reflectivity profiles associated with heavy rainfall over East Asia. Two types of heavy rainfall emerged as the most important rain processes over East Asia: type 1 (cold type) characterized by high storm height and abundant ice water under convectively unstable conditions, developing mostly over inland China; and type 2 (warm type) associated with a lower storm height and lower ice water content, developing mostly over the ocean. These two types also show sharp contrasts in relation to their seasonal changes and in the diurnal variation of frequency maxima, in addition to other contrasting meteorological parameters. The PR-derived heavy rain events were observed over the Korean peninsula and their spatiotemporal evolution was examined using 10-yr composites of 11-μm brightness temperature from geostationary satellites and Interim ECMWF Re-Analysis (ERA-Interim) data. Cold-type heavy rainfall over Korea is characterized by an eastward moving cloud system with an oval shape while the warm type shows a comparatively wide spatial distribution over an area extending from the southwest to northeast. Overall the warm-type process appears to link the low-level moisture convergence area to the vertically aligned divergence area formed over the jet stream level. This setup continuously pushes air upward under moist-adiabatically near-neutral conditions and thus yields heavy rainfall. As warm-type heavy rainfall persists longer, it is considered to be more responsible for flood events occurring over the Korean peninsula.


MAUSAM ◽  
2021 ◽  
Vol 51 (1) ◽  
pp. 17-24
Author(s):  
G. S. GANESAN ◽  
A. MUTHUCHAMI ◽  
A. S. PONNUSWAMY

In this paper an attempt is made to study the characteristics of Heavy Rainfall (HR) and Very Heavy Rainfall (VHR) over Chennai in the North East Monsoon month of October, November and December and the period considered is 1964 to 19%. It is observed that it is mainly the duration which determines whether rainfall would be heavy or very heavy. Defining a system as Depression or Cyclonic Storm or Severe Cyclonic Storm in the Bay of Bengal, the mean rainfall in a System-affected day is 1.5 times that of Non-system-affected day in October and November. No striking differences could be found in intensity and duration characteristics of rainfall between system- affected days and non-system affected days. Even if system induced. heavy rainfall does not occur other thing being normal, the total rainfall of this season can continue to be normal.


Asian Survey ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 402-425 ◽  
Author(s):  
David Brewster

The long-standing strategic disconnect between South Asia and the Korean Peninsula is breaking down. Driven by the changing balance of power in Asia, India and South Korea have developed a strong economic partnership, and taken small but significant steps toward a political and security relationship that refects their numerous shared strategic interests. This article explores the contours of this evolving relationship.


2021 ◽  
Vol 13 (12) ◽  
pp. 2303
Author(s):  
Li Luo ◽  
Jia Guo ◽  
Haonan Chen ◽  
Meilin Yang ◽  
Mingxuan Chen ◽  
...  

The seasonal variations of raindrop size distribution (DSD) and rainfall are investigated using three-year (2016–2018) observations from a two-dimensional video disdrometer (2DVD) located at a suburban station (40.13°N, 116.62°E, ~30 m AMSL) in Beijing, China. The annual distribution of rainfall presents a unimodal distribution with a peak in summer with total rainfall of 966.6 mm, followed by fall. Rain rate (R), mass-weighted mean diameter (Dm), and raindrop concentration (Nt) are stratified into six regimes to study their seasonal variation and relative rainfall contribution to the total seasonal rainfall. Heavy drizzle/light rain (R2: 0.2~2.5 mm h−1) has the maximum occurrence frequency throughout the year, while the total rainfall in summer is primarily from heavy rain (R4: 10~50 mm h−1). The rainfall for all seasons is contributed primarily from small raindrops (Dm2: 1.0~2.0 mm). The distribution of occurrence frequency of Nt and the relative rainfall contribution exhibit similar behavior during four seasons with Nt of 10~1000 m−3 registering the maximum occurrence and rainfall contributions. Rainfall in Beijing is dominated by stratiform rain (SR) throughout the year. There is no convective rainfall (CR) in winter, i.e., it occurs most often during summer. DSD of SR has minor seasonal differences, but varies significantly in CR. The mean values of log10Nw (Nw: mm−1m−3, the generalized intercept parameter) and Dm of CR indicate that the CR during spring and fall in Beijing is neither continental nor maritime, at the same time, the CR in summer is close to the maritime-like cluster. The radar reflectivity (Z) and rain rate (?) relationship (Z = ?R?) showed seasonal differences, but were close to the standard NEXRAD Z-R relationship in summer. The shape of raindrops observed from 2DVD was more spherical than the shape obtained from previous experiments, and the effect of different axis ratio relations on polarimetric radar measurements was investigated through T-matrix-based scattering simulations.


Sign in / Sign up

Export Citation Format

Share Document