Discounting Under Severe Weather Threat

Author(s):  
David J. Cox ◽  
Joy E. Losee ◽  
Gregory D. Webster

AbstractThe human and economic costs of severe weather damage can be mitigated by appropriate preparation. Despite the benefits, researchers have only begun to examine if known decision-making frameworks apply to severe-weather-related decisions. Using experiments, we found that a hyperbolic discounting function accurately described participant decisions to prepare for, and respond to, severe weather, although only delays of 1 month or longer significantly changed decisions to evacuate, suggesting that severe weather that is not imminent does not affect evacuation decisions. In contrast, the probability that a storm would impact the participant influenced evacuation and resource allocation decisions. To influence people’s evacuation decisions, weather forecasters and community planers should focus on disseminating probabilistic information when focusing on short-term weather threats (e.g., hurricanes); delay information appears to affect people’s evacuation decision only for longer-term threats, which may hold promise for climate-change warnings.

2014 ◽  
Vol 8 (1) ◽  
Author(s):  
Kristin Leighty ◽  
Ellen Simon ◽  
Kyung-Ok Yi

For many Americans the impacts of climate change are either hypothetical futures or far-off problems. However, climate change is already impacting millions of Americans as they commute to work each day. In the Nation’s capital the Washington Metropolitan Area Transit Authority has already suffered as heat waves and severe weather damage equipment and reduce service. The transportation authority must take a comprehensive look at its infrastructure and adapt policies to mitigate the current and future risks to transportation services.


2020 ◽  
Author(s):  
Claudia Custodio ◽  
Miguel Almeida Ferreira ◽  
Emilia Garcia-Appendini ◽  
Adrian Lam

2020 ◽  
Vol 34 (3) ◽  
pp. 87-112
Author(s):  
Bei Dong ◽  
Stefanie L. Tate ◽  
Le Emily Xu

SYNOPSIS Regulations implemented by the SEC in 2003 and 2004 simultaneously shortened the financial statement filing deadlines and increased the time required for both the preparation of financial statements and the related audit of accelerated filers (AFs). However, there were indirect, unintended negative consequences for companies not subject to the regulations, namely, non-accelerated filers (NAFs). The new regulations imposed strains on auditor resources requiring auditors to make resource allocation decisions that negatively affected NAFs. We find that NAFs with an auditor who had a high proportion of AF clients (high-AF) had longer audit delays after the regulations were implemented than NAFs of an auditor with a low proportion of AF clients (low-AF). Further, we document that NAFs with high-AF auditors were more likely to change auditors than NAFs with low-AF auditors. Finally, NAFs that switched to auditors with less AFs experienced shorter audit delays after the auditor change. JEL Classifications: M42; M48.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 427
Author(s):  
Tianyang Zhou ◽  
Jiaxin Zhang ◽  
Yunzhi Qin ◽  
Mingxi Jiang ◽  
Xiujuan Qiao

From supporting wood production to mitigating climate change, forest ecosystem services are crucial to the well-being of humans. Understanding the mechanisms that drive forest dynamics can help us infer how to maintain forest ecosystem services and how to improve predictions of forest dynamics under climate change. Despite the growing number of studies exploring above ground biomass (AGB) dynamics, questions of dynamics in biodiversity and in number of individuals still remain unclear. Here, we first explored the patterns of community dynamics in different aspects (i.e., AGB, density and biodiversity) based on short-term (five years) data from a 25-ha permanent plot in a subtropical forest in central China. Second, we examined the relationships between community dynamics and biodiversity and functional traits. Third, we identified the key factors affecting different aspects of community dynamics and quantified their relative contributions. We found that in the short term (five years), net above ground biomass change (ΔAGB) and biodiversity increased, while the number of individuals decreased. Resource-conservation traits enhanced the ΔAGB and reduced the loss in individuals, while the resource-acquisition traits had the opposite effect. Furthermore, the community structure contributed the most to ΔAGB; topographic variables and soil nutrients contributed the most to the number of individuals; demographic process contributed the most to biodiversity. Our results indicate that biotic factors mostly affected the community dynamics of ΔAGB and biodiversity, while the number of individuals was mainly shaped by abiotic factors. Our work highlighted that the factors influencing different aspects of community dynamics vary. Therefore, forest management practices should be formulated according to a specific protective purpose.


2020 ◽  
Vol 13 (1) ◽  
pp. 305
Author(s):  
W.J. Wouter Botzen ◽  
Tim Nees ◽  
Francisco Estrada

Fixed effects panel models are used to estimate how the electricity and gas consumption of various sectors and residents relate to temperature in Mexico, while controlling for the effects of income, manufacturing output per capita, electricity and gas prices and household size. We find non-linear relationships between energy consumption and temperature, which are heterogeneous per state. Electricity consumption increases with temperature, and this effect is stronger in warm states. Liquified petroleum gas consumption declines with temperature, and this effect is slightly stronger in cold states. Extrapolations of electricity and gas consumption under a high warming scenario reveal that electricity consumption by the end of the century for Mexico increases by 12%, while gas consumption declines with 10%, resulting in substantial net economic costs of 43 billion pesos per year. The increase in net energy consumption implies greater efforts to comply with the mitigation commitments of Mexico and requires a much faster energy transition and substantial improvements in energy efficiency. The results suggest that challenges posed by climate change also provide important opportunities for advancing social sustainability goals and the 2030 Agenda for Sustainable Development. This study is part of Mexico’s Sixth National Communication to the United Nations Framework Convention on Climate Change.


Author(s):  
G.J. Melman ◽  
A.K. Parlikad ◽  
E.A.B. Cameron

AbstractCOVID-19 has disrupted healthcare operations and resulted in large-scale cancellations of elective surgery. Hospitals throughout the world made life-altering resource allocation decisions and prioritised the care of COVID-19 patients. Without effective models to evaluate resource allocation strategies encompassing COVID-19 and non-COVID-19 care, hospitals face the risk of making sub-optimal local resource allocation decisions. A discrete-event-simulation model is proposed in this paper to describe COVID-19, elective surgery, and emergency surgery patient flows. COVID-19-specific patient flows and a surgical patient flow network were constructed based on data of 475 COVID-19 patients and 28,831 non-COVID-19 patients in Addenbrooke’s hospital in the UK. The model enabled the evaluation of three resource allocation strategies, for two COVID-19 wave scenarios: proactive cancellation of elective surgery, reactive cancellation of elective surgery, and ring-fencing operating theatre capacity. The results suggest that a ring-fencing strategy outperforms the other strategies, regardless of the COVID-19 scenario, in terms of total direct deaths and the number of surgeries performed. However, this does come at the cost of 50% more critical care rejections. In terms of aggregate hospital performance, a reactive cancellation strategy prioritising COVID-19 is no longer favourable if more than 7.3% of elective surgeries can be considered life-saving. Additionally, the model demonstrates the impact of timely hospital preparation and staff availability, on the ability to treat patients during a pandemic. The model can aid hospitals worldwide during pandemics and disasters, to evaluate their resource allocation strategies and identify the effect of redefining the prioritisation of patients.


2013 ◽  
Vol 127 ◽  
pp. 97-106 ◽  
Author(s):  
Ashok Mishra ◽  
Christian Siderius ◽  
Kenny Aberson ◽  
Martine van der Ploeg ◽  
Jochen Froebrich

Sign in / Sign up

Export Citation Format

Share Document