scholarly journals Thermoplastic polyurethane foams: From autoclave batch foaming to bead foam extrusion

2020 ◽  
pp. 0021955X2091220
Author(s):  
Amin Shabani ◽  
Amir Fathi ◽  
Sebastian Erlwein ◽  
Volker Altstädt

Two ester-based and one ether-based thermoplastic polyurethane grades have been used to produce thermoplastic polyurethane foams. The foaming process comprised pressure-induced batch foaming, foam extrusion, and bead foam extrusion by using an underwater granulator. Foam density and morphological properties, such as cell size, cell size distribution, and cell density, were measured through different analytical methods. Through autoclave batch foaming a minimum cell size of 10 µm and density of 202 kg/m3 is obtained, which is lower than the densities previously reported in the literature for thermoplastic polyurethane. Extrusion foaming however could not achieve the same range of foam expansion given that the lowest density achieved is 635 kg/m3 and a minimum cell size equal to 46 µm. The production of thermoplastic polyurethane bead foams is also reported for the first time. The minimum density of the obtained foamed beads is 306 kg/m3 and the lowest cell size is 55 µm.

2012 ◽  
Vol 584 ◽  
pp. 361-365 ◽  
Author(s):  
Baralu Jagannatha Rashmi ◽  
Daniela Rusu ◽  
Kalappa Prashantha ◽  
Marie France Lacrampe ◽  
Patricia Krawczak

Water blown biobased thermoplastic polyurethane (TPU) foams were prepared using synthetic and biobased chain extender. The concentration of chain extender, blowing agent (BA) and surfactant were varied and their effects on physical, mechanical and morphological properties of foams were investigated. Density, compressive strength and modulus of foams decreases with an increase in BA content and increased with chain extender concentration, but do not change significantly with change in surfactant concentration. The glass-transition temperatures of the foam samples increases with an increase in BA and chain extender concentration. The cell size of the foam sample increases slightly with an increase in BA whereas chain extender concentration has no effect on cell size.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 793
Author(s):  
Christian Bethke ◽  
Sandra A. Sanchez-Vazquez ◽  
Daniel Raps ◽  
Gökhan Bakis ◽  
Simon Bard ◽  
...  

The present study focuses on the processing and properties of epoxy foams by the use of CO2 blocked hardener N-aminoethylpiperazine (B-AEP) and different resins. Although some studies described the foaming with carbamates, little attention has been given to the interaction of resin properties (such as viscosity) on the foaming performance. Therefore, two resins, diglycidyl ether of bisphenol-A (DGEBA) and epoxy novolac (EN), as well as their 50:50 blend, were foamed with B-AEP and unblocked/blocked AEP hardener mixtures in a batch foaming process. Furthermore, the commercially available chemical blowing agent para-toluenesulfonyl hydrazide (TSH) was used as a benchmark for commonly used chemical blowing agents. The lowest density in this study was reached by the DGEBA+B-AEP system in the range of 215 kg/m3 with the drawback of an inhomogeneous cell structure and high cell size distribution. The best cell morphology and lowest cell size distribution was reached with the EN+15:85% unblocked:blocked hardener mixture, resulting in a density in the range of 394 kg/m3. A syntactic foam was achieved by a DGEBA+50:50% unblocked:blocked hardener mixture with a density of around 496 kg/m3. It was found that a higher viscosity of the resin lead to an increase in the density and a decrease in the cell size distribution range as a result of a closer expansion time window.


2018 ◽  
Vol 54 (6) ◽  
pp. 931-955 ◽  
Author(s):  
Mohsen Barmouz ◽  
Amir Hossein Behravesh

This paper reports a research work on characterization of foamed biocompatible polylactic acid–thermoplastic polyurethane blends in terms of microstructural, thermal, and physical properties. The brittleness of the polylactic acid is compensated via blending with an elastoplastic phase of thermoplastic polyurethane. A range of low bulk density foam with a high cell density was produced in a solid state foaming process. Addition of thermoplastic polyurethane phase acted against the cell growth and thus foam expansion, apparently due to its inherent lower storage modulus, which weakens the polymer matrix and leads to gas escape phenomenon. Evaluation of thermal properties showed a tangible effect of blending and foaming process on crystallization of the specimens, which confirmed that the sensitivity of polylactic acid’s crystallinity to CO2 gas saturation was reduced as a result of thermoplastic polyurethane addition. Measurement of cell diameters and cell densities of the foamed samples demonstrated formation of the fine closed cells structure as a result of suitable foaming parameters that were able to deal with stiffness and strength of the polymeric matrix.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (12) ◽  
pp. 41-43

The previous sections of this article described the synthesis, morphologies, and properties of a variety of low-density microcellular materials. This section discusses several of the analytical methods used and developed at the DOE laboratories to characterize these state-of-the-art materials.In some LDMM applications, quantitative measurements of the material's average cell size and cell size distribution are desired. Indeed, the term “microcellular” has little meaning without such information. As seen throughout this article, however, most LDMMs do not have a readily defined cellular character. The more general problem is to quantify the spatial scale(s) of the foam. For this purpose it is necessary to define one or more “measures” of the spatial scale. The possibilities are many and include not only single numbers (e.g., cell size and cell size standard deviation, where “cell size” is meaningful) but also functional descriptions (e.g., correlation functions).SEM provides direct images and, therefore, is the most popular technique for examining LDMM morphology. SEM, however, suffers from at least three limitations: (1) SEM examines only a very small volume of material, and thus is impractical for obtaining average morphological properties; (2) SEM requires that nonconductive LDMMs be coated, a process step that can alter the structure and introduce artifacts (particularly with delicate structures); and (3) SEM images are only two-dimensional projections of real three-dimensional structures.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Nian Yang ◽  
Zi-Quan Li ◽  
Jin-Song Liu

AbstractThe short glass fiber (SGF)/polypropylene (PP) and ethylene-1-octene copolymer (POE)/SGF/PP foam composites were prepared by extrusion and subsequent post-foaming process in designed dies. The compatilizers, maleic anhydride grafted PP (PP-g-MAH) and maleic anhydride grafted POE (POE-g- MAH), were employed to improve the performance of the foam composites, respectively, and their influences on the cellular structures, interfacial morphologies and mechanical properties of PP foam composites were investigated. It was found that the compatilizers resulted in modified PP foam composites characterized by uniform cell size distribution, reduced cell size and increased cell density except POE/SGF/PP with POE-g-MAH. The obvious enhanced SGF-matrix interfacial bonding was observed from the SEM examination, and POE-g-MAH also facilitated the compatibility between elastomeric particles and matrix. Testing results indicated that, by the introduction of PP-g-MAH or POE-g-MAH, the mechanical properties of PP foam composites were significantly improved, and it seemed that the PP-g-MAH was more effective in strengthening the flexural and compressive strength while POE-g-MAH greatly increased the impact toughness.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 656
Author(s):  
Tao Zhang ◽  
Seung-Jun Lee ◽  
Yong Hwan Yoo ◽  
Kyu-Hwan Park ◽  
Ho-Jong Kang

Expanded thermoplastic polyurethane (ETPU) beads were prepared by a supercritical CO2 foaming process and compression molded to manufacture foam sheets. The effect of the cell structure of the foamed beads on the properties of the foam sheets was studied. Higher foaming pressure resulted in a greater number of cells and thus, smaller cell size, while increasing the foaming temperature at a fixed pressure lowered the viscosity to result in fewer cells and a larger cell size, increasing the expansion ratio of the ETPU. Although the processing window in which the cell structure of the ETPU beads can be maintained was very limited compared to that of steam chest molding, compression molding of ETPU beads to produce foam sheets was possible by controlling the compression pressure and temperature to obtain sintering of the bead surfaces. Properties of the foam sheets are influenced by the expansion ratio of the beads and the increase in the expansion ratio increased the foam resilience, decreased the hardness, and increased the tensile strength and elongation at break.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3055
Author(s):  
Ismael Sánchez-Calderón ◽  
Victoria Bernardo ◽  
Mercedes Santiago-Calvo ◽  
Haneen Naji ◽  
Alberto Saiani ◽  
...  

In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nguyen Thi Thuy ◽  
Pham Ngoc Lan

In this work, for making rigid polyurethane foams, only water was used to serve as a blowing agent. Vietnam rubber seed oil-based polyol was also used. Following our previous research results, water content was fixed at 4 wt.% and glycerol content at 3 wt.%, as compared to biopolyol. The effect of the NCO/OH ratio, main catalyst (dibutyltin dilaurate), cocatalyst (triethylamine), and surfactant content as well as the surfactants on performances of foams was investigated through compressive strength, density, cell size, and size distribution. A suitable formulation for making foam by using biopolyol made from rubber seed oil was established. In parallel with it, foam based on commercial polyol derived from petroleum was also manufactured. The characteristics of the foaming process were assessed. The mechanical properties, thermal behavior, water absorption, and dimensional stability of foams were evaluated. The cellular morphology study shows that the cells of foam based on biopolyol were closed and rather uniform; however, cell size was 3% bigger and cell walls were also a bit thicker. The results showed that the properties of foam based on biopolyol were similar to those of petrofoams. This result may open a possibility to replace petropolyol with renewable biopolyol in foam fabrication.


Sign in / Sign up

Export Citation Format

Share Document