A corrective function for the estimation of the longitudinal Young’s modulus in a developed analytical model for 2.5D woven composites

2010 ◽  
Vol 45 (17) ◽  
pp. 1793-1804 ◽  
Author(s):  
Ali Hallal ◽  
Rafic Younes ◽  
Samer Nehme ◽  
Farouk Fardoun
Author(s):  
A. H. Gandhi ◽  
H. K. Raval

As forming of the double or multiple curvature surfaces, includes roller forming at least once in the sequential process; its efficient performance is of great importance for controlling the final product dimensions. Most efficient and economical way to produce the cylinder is to roll the plate through the roller in single pass. Literature review revels that, most of the reported analytical models for the prediction of springback were developed with the assumption of zero initial strain. However, in practice multiple pass bending is recommended to work within the power limitation of the machine and to improve the accuracy of the final product. An attempt is made to develop the analytical model for estimation of top roller position as a function of desired radius of curvature, for multiple pass 3-roller forming of cylinders, considering real material behavior. Due to the change of Young's modulus of elasticity (E) under deformation, the springback is larger than the springback calculated with constant E. Developed analytical model was modified to include the effect of change of Young's modulus during the deformation. Developed multiple pass analytical models were compared with the single pass analytical model and experiments (on pyramid type 3-roller bending machine).


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jianhang Chen ◽  
Shengli Yang ◽  
Hongbao Zhao ◽  
Junwen Zhang ◽  
Fulian He ◽  
...  

Fully grouted rock bolts are widely used in civil engineering and mining engineering, playing a significant role in keeping the stability and safety of excavations. In this paper, the load transfer mechanism of fully grouted rock bolts was studied with an analytical model. A trilinear model was used to depict the bond-slip behaviour of the bolt/grout interface. The displacement of the confining medium was involved in this analytical model. Then, the shear stress propagation along the bolt/grout interface was analysed in the elastic, elastic-softening, elastic-softening-debonding, softening-debonding, and debonding stages. Experimental pull-out tests were used to validate this analytical model. There was a good correlation between experimental and analytical results. A parametric study was conducted to evaluate the influence of Young’s modulus of the confining medium, the shear strength of the bolt/grout interface, and the residual shear strength of the bolt/grout interface on the load transfer performance of rock bolts. The results show that increasing Young’s modulus of the confining medium was beneficial for improving the load transfer performance of rock bolts. However, once Young’s modulus of the confining medium was beyond a critical limit, it had marginal effect on the peak load of rock bolts. Furthermore, increasing the shear strength of the bolt/grout interface and the residual shear strength of the bolt/grout interface led to rising of the peak load of rock bolts. However, compared with the residual shear strength of the bolt/grout interface, increasing the shear strength of the bolt/grout interface had more apparent effect in improving the peak load of rock bolts.


2021 ◽  
Author(s):  
Danzhu Zheng ◽  
Stefan Z. Miska ◽  
Evren Ozbayoglu

Abstract Creep, the time-dependent deformation of rock, will increase the pressure applied on the interface between the cement and formation. The objective of this paper is to study the influence of the formation creeping effect on the cement sheath integrity and zonal isolation. It focuses on the failure behavior of the cement sheath in the long period after drilling. The paper also investigates the changing of mechanical properties of cement to avoid loss of zonal isolation. The interface pressure between the cement and formation cannot be measured directly in the field, so it will be valuable to predict this pressure through alternative methods. A Casing-Cement -Formation System (CCFS) analytical model based on linear-elasticity and Cam-Clay plasticity model was built. The CCFS model includes four layers, casing layer-cement layer- plastic creeping layer and the formation layer. This plastic- transition layer is formed because of formation creeping. The axial stress and tangential stress distribution of the cement sheath were calculated by the CCFS model. The contact pressure between the cement sheath and formation was calculated. Mohr-Coulomb yielding criterion was applied to estimate failure behavior for the cement sheath. Two case studies were performed with the new CCFS model and previous CCFS model that do not consider the formation creeping effect. The comparison between two models showed that without considering the formation creeping effect, we might underestimate failure of the cement sheath. The simulation result by our CCFS analytical model indicated that the creeping effect would make the interface between the casing and cement vulnerable to shear failure. We changed the Young's modulus and Poisson's ratio for the failed case to investigate the influence of mechanical properties of the cement material. The result showed that a lower Young's modulus and higher Poisson's ratio were preferred for improving zonal isolation. Instead of pursuing how creeping happens, this paper accepts formation creeping as a fact in the whole life of the well. The geomechanical impacts of the plastic-creeping formation, although undetectable from the surface observations, may cause detrimental consequences to cement integrity.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Sign in / Sign up

Export Citation Format

Share Document