Thermal conductivity of biomimetic leaf composite

2017 ◽  
Vol 52 (13) ◽  
pp. 1737-1746 ◽  
Author(s):  
G Liu ◽  
R Ghosh ◽  
D Mousanezhad ◽  
A Vaziri ◽  
H Nayeb-Hashemi

The venous morphology of a typical plant leaf affects its mechanical and thermal properties. Such a material could be considered as a fiber reinforced composite structure where the veins and the rest of the leaf are considered as two materials having highly contrast mechanical and thermal properties. The variegated venations found in nature is idealized into three principal fibers—the central mid-fiber corresponding to the mid-rib, straight parallel secondary fibers attached to the mid-fiber representing the secondary veins, and then another set of parallel fibers emanating from the secondary fibers mimicking the tertiary veins of a typical leaf. This paper addresses the in-plane thermal conductivity of such a composite by considering such a venous fiber morphology embedded in a matrix material. We have considered two cases, fibers having either higher or lower conductivity respect to the matrix. The tertiary fibers do not interconnect the secondary fibers in our present study. We carry out finite element based computational investigation of the thermal conductivity of these composites under uniaxial thermal gradients and study the effect of different fiber architectures. To this end, we use two broad types of architectures both having similar central main fiber but differing in either having only secondary fibers or additional tertiary fibers. The fiber and matrix volume fractions are kept constant and a comparative parametric study is carried out by varying the inclination of the secondary fibers. We find the heat conductivity in the direction of the main fiber (Y direction) increases significantly as the fiber angle of the secondary increases. Furthermore, for composite with metal fibers, the conductivity in the Y direction is further enhanced when composite is manufactured by having secondary fibers forming a closed cell structure. However, for composite with ceramic fibers, the conductivity of the composite in the Y direction is little affected by having secondary fibers closed. An opposite behavior is observed when considering conductivity of the composite in the X direction. The conductivity of the composite in the X direction is reduced with increase in the angle of the secondary fibers. Higher conductivity in the X direction is achieved for composite with no closed cells for composites with metal fibers. The results also indicate that for composites with the constant fiber volume fraction, morphology of tertiary fibers may not significantly alter material conductivities. In conclusion, introducing a leaf-mimicking topology in fiber architecture can provide significant additional degrees of tunability in design of these composite structures.

2017 ◽  
Vol 52 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Gongdai Liu ◽  
R Ghosh ◽  
A Vaziri ◽  
A Hossieni ◽  
D Mousanezhad ◽  
...  

A typical plant leaf can be idealized as a composite having three principal fibers: the central mid-fiber corresponding to the mid-rib, straight parallel secondary fibers attached to the mid-fiber representing the secondary veins, and then another set of parallel fibers emanating from the secondary fibers mimicking the tertiary fibers embedded in a matrix material. This paper introduces a biomimetic composite design inspired by the morphology of venous leafs and investigates the effects of venation morphologies on the in-plane mechanical properties of the biomimetic composites using finite element method. The mechanical properties such as Young’s moduli, Poisson’s ratio, and yield stress under uniaxial loading of the resultant composite structures was studied and the effect of different fiber architectures on these properties was investigated. To this end, two broad types of architectures were used both having similar central main fiber but differing in either having only secondary fibers or additional tertiary fibers. The fiber and matrix volume fractions were kept constant and a comparative parametric study was carried out by varying the inclination of the secondary fibers. The results show that the elastic modulus of composite in the direction of main fiber increases linearly with increasing the angle of the secondary fibers. Furthermore, the elastic modulus is enhanced if the secondary fibers are closed, which mimics composites with closed cellular fibers. In contrast, the elastic modulus of composites normal to the main fiber ( x direction) exponentially decreases with the increase of the angle of the secondary fibers and it is little affected by having secondary fibers closed. Similar results were obtained for the yield stress of the composites. The results also indicate that Poisson’s ratio linearly increases with the secondary fiber angle. The results also show that for a constant fiber volume fraction, addition of various tertiary fibers may not significantly enhance the mechanical properties of the composites. The mechanical properties of the composites are mainly dominated by the secondary fibers. Finally, a simple model was proposed to predict these behaviors.


2013 ◽  
Vol 745-746 ◽  
pp. 582-586 ◽  
Author(s):  
Jian Bao Hu ◽  
Shao Ming Dong ◽  
Xiang Yu Zhang ◽  
Zhen Wang ◽  
Hai Jun Zhou ◽  
...  

Cf/SiC composites were fabricated through in situ growth of carbon nanotubes (CNTs) on three-dimensional needle-punched carbon fabric via chemical vapor deposition and polymer impregnation and pyrolysis process. The mechanical and thermal properties of the composites were investigated. The flexural strength and fracture toughness were decreased due to the fiber volume fraction loss and much shorter pull-out length of fibers which was caused by the higher interfacial bonding strength between fiber and matrix after the growth of CNTs. Brittle fracture character of CNTs was observed due to the strong interfacial bonding strength between CNTs and matrix. The parallel thermal conductivity and perpendicular thermal conductivity were improved to 14.5% and 8.0% respectively.


2010 ◽  
Vol 45 (11) ◽  
pp. 1245-1255 ◽  
Author(s):  
Sangwook Sihn ◽  
Ajit K. Roy

Micromechanical analyses were conducted for the prediction of transverse thermal conductivity of laminated composites. We reproduced and reinvestigated both analytic and numerical models with regular and randomly distributed fibers in matrix material. A parametric study was conducted for wide ranges of fiber volume fractions and fiber-to-matrix thermal conductivity ratios. The numerical solutions using finite element (FE) analysis were compared with various analytic solutions from simple and enhanced rule or mixtures and an effective inclusion method (EIM). It was found that the EIM yields a reasonably agreeable solution with the FE solution using a hexagonal-array of regular fiber distribution for wide ranges of fiber volume fraction and fiber-to-matrix thermal conductivity ratios, which makes the EIM a useful method in predicting various multiphysical transverse properties of composites. Comparison of the results from the regular- and random-fiber models indicates that the transverse thermal conductivity of composites can significantly be affected by the random fiber distributions, especially at high fiber volume fractions. A similar conclusion was made for the foams with random pore distribution. It was shown that the predictions with the random fiber distribution agree well with the experimental data.


Author(s):  
Lingzhi Han ◽  
Jincheng Lei ◽  
Zishun Liu ◽  
Heow Pueh Lee

In this paper, the structural genome approach is used for multiscale analyses to predict the mechanical and thermal properties of particle reinforced hydrogel composites. First, the structure genome model of particle reinforced hydrogel composites is created by the random sequential adsorption algorithm. Then the mechanical properties and equivalent thermal conductivity of hydrogel composites are numerically studied by the structural genome approach. The effects of particles with different volume fractions and material properties on their mechanical and thermal properties are investigated. From the simulation results, it can be found that within a certain range of volume fraction, the mechanical properties and equivalent thermal conductivity of hydrogel composites are positively correlated with the volume fractions of particles. We also find that with the increase of the mechanical properties and thermal conductivity of particles, the properties of hydrogel can be improved and eventually reach stabilization. The structural genome approach shows excellent efficiency in multiscale structure analysis. It is a convenient method for the simulation of complex soft material composites.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Min Liu ◽  
Zoran S. Petrovic ◽  
Yijin Xu

AbstractStarting from a bio-based polyol through modification of soybean oil, BIOH™ X-210, two series of bio-based polyurethanes-clay nanocomposite foams have been prepared. The effects of organically-modified clay types and loadings on foam morphology, cell structure, and the mechanical and thermal properties of these bio-based polyurethanes-clay nanocomposite foams have been studied with optical microscopy, compression test, thermal conductivity, DMA and TGA characterization. Density of nanocomposite foams decreases with the increase of clay loadings, while reduced 10% compressive stress and yield stress keep constant up to 2.5% clay loading in polyol. The friability of rigid polyurethane-clay nanocomposite foams is high than that of foam without clay, and the friability for nanofoams from Cloisite® 10A is higher than that from 30B at the same clay loadings. The incorporation of clay nanoplatelets decreases the cell size in nanocomposite foams, meanwhile increases the cell density; which would be helpful in terms of improving thermal insulation properties. All the nanocomposite foams were characterized by increased closed cell content compared with the control foam from X-210 without clay, suggesting the potential to improve thermal insulation of rigid polyurethane foams by utilizing organically modified clay. Incorporation of clay into rigid polyurethane foams results in the increase in glass transition temperature: the Tg increased from 186 to 197 to 204 °C when 30B concentration in X-210 increased from 0 to 0.5 to 2.5%, respectively. Even though the thermal conductivity of nanocomposite foams from 30B is lower than or equal to that of rigid polyurethane control foam from X-210, thermal conductivity of nanocomposite foams from 10A is higher than that of control at all 10A concentrations. The reason for this abnormal phenomenon is not clear at this moment; investigation on this is on progress.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


Sign in / Sign up

Export Citation Format

Share Document