scholarly journals MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration

2018 ◽  
Vol 97 (7) ◽  
pp. 820-827 ◽  
Author(s):  
M. Shin ◽  
M.B. Chavez ◽  
A. Ikeda ◽  
B.L. Foster ◽  
J.D. Bartlett

Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro–computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.

2020 ◽  
Vol 117 (32) ◽  
pp. 19201-19208 ◽  
Author(s):  
Yushi Bai ◽  
Zanlin Yu ◽  
Larry Ackerman ◽  
Yan Zhang ◽  
Johan Bonde ◽  
...  

As the hardest tissue formed by vertebrates, enamel represents nature’s engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue–based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.


1987 ◽  
Vol 66 (12) ◽  
pp. 1702-1707 ◽  
Author(s):  
Y. Takano ◽  
S. Matsuo ◽  
S. Wakisaka ◽  
H. Ichikawa ◽  
S. Nishikawa ◽  
...  

The influence of vanadate, a potent inhibitor of Ca2+-ATPase and Na+-K+-ATPase, on 45Ca uptake in maturing enamel of the rat incisor was investigated by a vascular perfusion method combined with 45Ca autoradiography. The morphological integrity of the maturation-stage enamel organ was well-retained during vascular perfusion under all the experimental conditions. Distinct patterns of 45Ca labeling, comparable with those found in previous in vivo 45Ca autoradiographic studies, appeared in the maturing enamel after vascular perfusion with a standard perfusate. One mmol/L vanadate added to the standard perfusate caused a drastic decrease in 45Ca uptake in the maturing enamel, corresponding to the ruffle-ended ameloblasts, leaving narrow peaks of moderate intensity corresponding to the bands of the overlying smooth-ended ameloblasts. The in vitro labeling of exposed enamel surfaces with 45Ca revealed blackening of autoradiographic emulsion in wide bands separated by unlabeled or slightly labeled narrow ones resembling the distribution of smooth-ended ameloblasts in both control and vanadate-treated incisors. Our observations indicate that the ruffle-ended ameloblasts of the rat incisor serve as an efficient diffusion barrier to calcium ions and regulate transcellular calcium transport to the maturing enamel, at least in part, by a vanadate-sensitive mechanism.


1999 ◽  
Vol 10 (4) ◽  
pp. 425-441 ◽  
Author(s):  
J.D. Bartlett ◽  
J.P. Simmer

For almost three decades, proteinases have been known to reside within developing dental enamel. However, identification and characterization of these proteinases have been slow and difficult, because they are present in very small quantities and they are difficult to purify directly from the mineralizing enamel. Enamel matrix proteins such as amelogenin, ameloblastin, and enamelin are cleaved by proteinases soon after they are secreted, and their cleavage products accumulate in the deeper, more mature enamel layers, while the full-length proteins are observed only at the surface. These results suggest that proteinases are necessary for "activating" enamel proteins so the parent proteins and their cleavage products may perform different functions. A novel matrix metalloproteinase named enamelysin (MMP-20) was recently cloned from tooth tissues and was later shown to localize primarily within the most recently formed enamel. Furthermore, recombinant porcine enamelysin was demonstrated to cleave recombinant porcine amelogenin at virtually all of the sites that have previously been described in vivo. Therefore, enamelysin is at least one enzyme that may be important during early enamel development. As enamel development progresses to the later stages, a profound decrease in the enamel protein content is observed. Proteinases have traditionally been assumed to degrade the organic matrix prior to its removal from the enamel. Recently, a novel serine proteinase named enamel matrix serine proteinase-1 (EMSP1) was cloned from enamel organ epithelia. EMSP1 localizes primarily to the early maturation stage enamel and may, therefore, be involved in the degradation of proteins prior to their removal from the maturing enamel. Other, as yet unidentified, proteinases and proteinase inhibitors are almost certainly present within the forming enamel and await discovery.


Author(s):  
Huan Zhao ◽  
Xiaokang Wang ◽  
Wen Zhang ◽  
Lin Wang ◽  
Can Zhu ◽  
...  

Polyether ether ketone (PEEK)–based biomaterials have been widely used in the field of spine and joint surgery. However, lack of biological activity limits their further clinical application. In this study, we synthesized a bioclickable mussel-derived peptide Azide-DOPA4 as a PEEK surface coating modifier and further combined bone morphogenetic protein 2 functional peptides (BMP2p) with a dibenzylcyclooctyne (DBCO) motif through bio-orthogonal reactions to obtain DOPA4@BMP2p-PEEK. As expected, more BMP2p can be conjugated on PEEK after Azide-DOPA4 coating. The surface roughness and hydrophilicity of DOPA4@BMP2p-PEEK were obviously increased. Then, we optimized the osteogenic capacity of PEEK substrates. In vitro, compared with the BMP2p-coating PEEK material, DOPA4@BMP2p-PEEK showed significantly higher osteogenic induction capability of rat bone marrow mesenchymal stem cells. In vivo, we constructed a rat calvarial bone defect model and implanted PEEK materials with a differently modified surface. Micro-computed tomography scanning displayed that the DOPA4@BMP2p-PEEK implant group had significantly higher new bone volume and bone mineral density than the BMP2p-PEEK group. Histological staining of hard tissue further confirmed that the DOPA4@BMP2p-PEEK group revealed a better osseointegrative effect than the BMP2p-PEEK group. More importantly, we also found that DOPA4@BMP2p coating has a synergistic effect with induced Foxp3+ regulatory T (iTreg) cells to promote osteogenesis. In summary, with an easy-to-perform, two-step surface bioengineering approach, the DOPA4@BMP2p-PEEK material reported here displayed excellent biocompatibility and osteogenic functions. It will, moreover, offer insights to engineering surfaces of orthopedic implants.


2004 ◽  
Vol 4 ◽  
pp. 1027-1034 ◽  
Author(s):  
Vassilios Kyriazis ◽  
Margaret Tzaphlidou

An approach to the problem of bone disorders is the measurement of the skeleton’'s static and dynamic strength, an estimate of which is bone mineral density. A decrease in the latter may be due to a decrease in either Ca or P, or to dissimilar decreases in both. Consequently, the determination of the Ca/P ratio may provide a sensitive measure of bone mineral changes and may add to our understanding of the changes occurring in bone diseases. This paper reviews techniques such as transmission electron microscopy (TEM) and micro-computed tomography (μu-CT), which have been developed for thein vitroassessment of the Ca,P content and the skeletal Ca/P ratio. Their main aspects are presented, as much as results regarding the referred values. The presentation of otherin vitroorin vivotechniques, such as instrumental neutron activation analysis (INAA) or X-ray absorptiometry accordingly, would be the issue of another article. The authors argue that the choice of the best technique relies on its cost ad ease of applicability, its reliability, and precision.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2003 ◽  
Vol 160 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Katarina Wolf ◽  
Irina Mazo ◽  
Harry Leung ◽  
Katharina Engelke ◽  
Ulrich H. von Andrian ◽  
...  

Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor–based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of β1 integrins and MT1–matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered β1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.


Sign in / Sign up

Export Citation Format

Share Document