Odontoblastic Exosomes Attenuate Apoptosis in Neighboring Cells

2019 ◽  
Vol 98 (11) ◽  
pp. 1271-1278 ◽  
Author(s):  
H.S. Wang ◽  
F.H. Yang ◽  
Y.J. Wang ◽  
F. Pei ◽  
Z. Chen ◽  
...  

Each odontoblast is tightly linked to other odontoblasts. They form a line of defense and are capable of withstanding external stimuli, particularly the inflammation caused by caries. Thus, we investigated exosomes derived from odontoblasts as an intercellular mechanism by which inflamed odontoblasts are protected from apoptosis. CD63, an exosome marker, was expressed at high levels in caries-affected regions of the dental pulp. We conducted an ex vivo experiment by applying different concentrations of lipopolysaccharide (LPS) to the odontoblast-like cells (mineralization was induced in stem cells derived from the apical papilla). Odontoblast-like cells treated with a high concentration of LPS (20 µg/mL LPS, severely affected) exhibited an accelerated release of exosomes, which attenuated the LPS-induced cell apoptosis of odontoblast-like cells treated with a low concentration of LPS (1 µg/mL LPS, mildly affected). Next, we blocked exosome uptake with chlorpromazine, and the rescue effect vanished. Based on our findings, severely inflamed odontoblasts attenuate the apoptosis of mildly inflamed neighboring cells through an exosome-mediated intercellular signaling pathway.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiyao Pang ◽  
Yanqiu Wang ◽  
Jintao Wu ◽  
Zhou Zhou ◽  
Tao Xu ◽  
...  

Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 μg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4786-4786
Author(s):  
Fang Zheng ◽  
Huiyu Li ◽  
Fang Liu ◽  
Wen Du ◽  
Shiang Huang

Abstract Abstract 4786 Background: Mounting evidence that leukemia stem cells (LSCs) occupy and receive important signals from specialized areas (“niches”) that alter the stromal microenvironment and disrupt normal hematopoiesis. The innovative therapeutic strategies focus on targeting of microenvironmental interactions in leukemia. Therefore, it is important to fully elaborate the mechanisms of microenvironment- mediated leukemogenesis. Stromal-cell derived factor-1alpha (SDF-1à) is the main cytokine produced by bone marrow stromal cells. The SDF-1à/CXCR4 axis specifically mediates homing and migration of leukemic blasts. While our previous work has shown that SDF-1à significantly increases hERG1 K+ tail current and a specific hERG1 K+ channels inhibitor significantly blocks SDF-1à- induced migration of leukemic cells. In fact, recent studies suggested that the human ether à-go-go-related gene (HERG) K+ channels are constitutively expressed in AML stem/progenitor cells, and regulate cell proliferation as well as clinical prognosis. Here we investigate the hypothesis that a new leukemic blast–stromal interaction is mediate by hERG1 K+ channels and SDF-1à. Methods: Proliferation assay, apoptosis and cell cycle analysis were used to analyze effects of E-4031(a specific hERG1 K+ channels inhibitor) in the presence of SDF-1à on leukemia cell lines HL-60. RT–PCR and western blot analysis were used to determine changes in herg1 expression and Wnt/β-catenin signaling pathway in response to SDF-1à in the presence and absence of E-4031. Primary leukemias obtained from the bone marrow of de novo AML patients (n=6) at diagnosis. Mononuclear cells were isolated from the samples using Ficoll-Paque density gradient separation, and cultured with SDF-1à in the presence and absence of E-4031. AML colony-forming cell (CFC) assays and flow cytometry were performed to assess the effects of E-4031 in the presence of SDF-1à on LSCs. Results: SDF-1a enhanced cell proliferation in a dose-dependent manner. The maximal increase by 1.6 times was obtained for 100ng/ml. While this effect was impaired by E-4031, which significantly impaired cell proliferation induced by SDF-1a with a concentration of 100ng/mL by (40.3±8.4)%. In addition, E-4031 inhibited SDF-1a-stimulated leukemic cell proliferation by inducing G0/G1 arrest. Cell apoptosis analysis revealed that either E-4031 or SDF-1a has direct effect on HL-60 cell apoptosis. Unexpected, there was no significant synergistic effect upon apoptosis. After exposures to 100ng/ml SDF-1à, hERG1 mRNA and protein levels increased significantly, by approximately 1.5-fold above control levels. Moreover, SDF-1a increased the expression of Wnt/β-catenin target genes, including β-catenin, cyclin-D1, and c-myc. Interestingly, this manner was abolished by E-4031. The presence of progenitor cells was evaluated by plating suspension cells cultured with SDF-1a in CFC assays. E-4031 decreased numbers of CFC in suspension to 77.3%. Upon expansion with SDF-1a, E-4031 resulted in a significant reduction in the number of progenitors to 31.8%. The effects on LSCs were determined on phenotypically described stem cells from AML. Treatment with 1μ M E-4031 for 48 hours inhibited the proliferation of LCSs compared with untreated controls, a mean viability of 11.8% for CD34+CD38- and 10.4% for CD34+CD38+. In contrast, a significant decrease in the viability of stem cells after E-4031 in the present of SDF-1a treatment, with only 9.6% for CD34+CD38- and 9.5% for CD34+CD38+. Conclusions: Initial studies provided evidence that the hERG1 K+ channels and SDF-1 emerged as mediators of stromal/leukemic cell interactions, which largely contribute to the proliferation mediated by the microenvironment. Likewise, other components of bone marrow microenvironment, such as Wnt/β-catenin signaling pathway, may modulate hERG1 K+ channels in leukemic cells. Taken together, these results provided rationale for studies of new molecular events involved in bone marrow microenvironment and leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Yi-Zhou Tan ◽  
Xin-Yue Xu ◽  
Ji-Min Dai ◽  
Yuan Yin ◽  
Xiao-Tao He ◽  
...  

Abstract Background: Stem cells undergone long-term ex-vivo expansion are most likely functionally compromised (namely cellular senescence) in terms of their stem cell properties and therapeutic potentials. Due to the ability to attenuate cellular senescence, melatonin (MLT) has been proposed as an adjuvant across long-term cell expansion protocols, but the underlying mechanism remains largely unknown. Methods: Human periodontal ligament stem cells (PDLSCs) were isolated and cultured ex-vivo for 15 passages, and passage 2, 7 and 15 cells were used to interrogate the cellular senescence and alteration in cell autophagy during long-term expansion. The cellular senescence features were evidenced by senescence-associated β-galacotosidase (SA-β-gal) activity and the expression of senescence-related proteins including p53, p21, p16 and γ-H2AX. Electronic microscope was used to observe the autophagic vesicles. Adenovirus mRFP-GFP-LC3 was transfected to indicate the alteration of autophagic flux during long-term expansion, and the autophagy-associated proteins Atg7, Beclin-1, LC3-II and p62 were evaluated by Western blot. Results: It was found that long-term in-vitro passaging led to an accumulated SA-β-gal, elevated expressions of p53, p21, p16 and γ-H2AX, along with downregulated autophagy-associated proteins Atg7, Beclin-1 and LC3 as well as a mounting autophagy substrate p62. In accordance with expectation, supplemented with MLT not only ameliorated cells to a younger state but also restored the impaired autophagy level in senescent cells. Additionally, we demonstrated that autophagy inhibitor could block such MLT-induced cell rejuvenation. When the underlying signaling pathways involved was interrogated, we found that MLT receptor (MT) participated in mediating MLT-related autophagy restoration by regulating PI3K/AKT/mTOR signaling pathway.Conclusions: The present study suggests that MLT may rejuvenate long-term expansion-caused cellular senescence by restoring autophagy, more likely via PI3K/AKT/mTOR signaling pathway in an MT-dependent manner. This is the first report identifying the MT-dependent PI3K/AKT/mTOR signaling involved in MLT-induced autophagy alteration, pointing to a potential target for using autophagy-restoring agents such as MLT to develop optimized clinical-scale cell production protocols.


2021 ◽  
Author(s):  
Fang Ji ◽  
Yueting Lin ◽  
Jing Pan ◽  
Zhao Yang ◽  
Qianhui Ren ◽  
...  

Abstract Background: Many studies have found that circRNA plays a part in osteoblast differentiation. However, its mechanism remains unknown. Methods: High-throughput sequencing was used to identifield the different expression of circRNA during osteogenic dental pulp stem cells (DPSCs) differentiation. Luciferase report analysis and RT-qPCR were used to clarify the expression and regulation relationship among circ-FURIN, miR-125 and SOX11. The heterotopic bone formation experiment was further used to confirm the osteoblast differentiation of DPSC with different expression of circ-FURIN, miR-125 and SOX11. Results: Study indicated that circ-FURIN expression remarkably increased during osteoblast differentiation, yet circ-FURIN knockdown suppressed it. Bioinformatics and luciferase results discovered that miR-125 is the downstream target of circ-FURIN. Furthermore, circ-FURIN upregulation decreased miR-125 expression. MiR-125 upregulation restored the promotion effect of circ-FURIN on osteogenic DPSC differentiation. Luciferase report analysis verified that SOX11 is miR-125 downstream target. miR-125 overexpression suppressed osteogenic DPSC differentiation through targeting SOX11. SOX11 overexpression restored miR-125 inhibitory effect on osteogenic DPSC differentiation. In vivo experiments with heterotopic bone model suggested that circ-FURIN overexpression has crucial function to enhance heterotopic bone formation. Conclusions: In summary, circ-FURIN enhances osteoblast DPSC differentiation via the SOX11 signaling pathway by sponging miR-125. These findings suggest a novel therapeutic target for osteoporosis treatment.


Sign in / Sign up

Export Citation Format

Share Document