Quaternary ammonium salt–modified polyacrylonitrile/polycaprolactone electrospun nanofibers with enhanced antibacterial properties

2021 ◽  
pp. 004051752199718
Author(s):  
Hongnan Zhang ◽  
Tingting Zhang ◽  
Qiaohua Qiu ◽  
Xiaohong Qin

In this experiment, octadecyltrimethylammonium chloride (STAC), a cationic antibacterial agent, was designed to modify hydrolyzed polyacrylonitrile (PAN) through tight electrostatic attraction. Then, the modified PAN was successfully electrospun with polycaprolactone (PCL) to obtain PCL/PAN-STAC nanofibrous membranes with enhanced mechanical properties. The modified PAN was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and elemental analysis. The morphological, mechanical and antibacterial properties of nanofibrous membranes were investigated. The blended nanofibrous membrane presented a uniform and stable structure with small pore size. Tensile tests indicated that the mechanical property of PCL/PAN-STAC nanofibrous membrane was obviously enhanced by blending. Disk diffusion tests showed that the inhibition zones of PCL/PAN-STAC against Escherichia coli and Staphylococcus aureus were 7.56 ± 0.05 mm and 15.37 ± 0.34 mm, respectively. Shaking method indicated that the antibacterial activity against E. coli was as high as 96.20 ± 0.89% when the use of PCL/PAN-STAC reached 9 mg. Therefore, this antibacterial nanofibrous membrane is very favorable for applications such as protective filtration masks and wound dressing.

2021 ◽  
pp. 096739112110374
Author(s):  
Ruge Cao ◽  
Xuqing Zhai ◽  
Xueyang Li ◽  
Xiaoyu Zhao

To prevent microbial contamination in foods and medical tools, we prepared a novel antibacterial material nano-silver loaded poly(styrene-co-acrylic) (nAg-PSA) composites by in situ reductions. The nAg-PSA was characterized by scanning electron microscope, transmission electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The antibacterial properties of nAg-PSA against Escherichia coli and Staphylococcus aureus were systematically evaluated, and the underlying mechanism was investigated. Results showed that the silver nanoparticles were successfully loaded onto PSA microspheres, highly dispersed on the surface of nAg-PSA nanoparticles. The nAg-PSA nanoparticles all showed significant antibacterial effects, among which nAg-PSA4 had maximum diameters of inhibition zones against the Gram-negative E. coli (1.18 mm) and the Gram-positive S. aureus (1.29 mm), respectively, which closely related to the size and density of silver nanoparticles covered on the surface.


1996 ◽  
Vol 40 (1) ◽  
pp. 17-21 ◽  
Author(s):  
L Aguilar ◽  
I P Balcabao ◽  
P Salvá ◽  
M Martín ◽  
J Costa ◽  
...  

Twelve adult males participated in a randomized crossover phase I clinical trial comparing serum bactericidal titers (SBTs), urine bactericidal titers (UBTs), and urine killing rates (UKRs) against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, after the administration of single 400-mg doses of rufloxacin and norfloxacin at different times up to 72 h postdose. SBTs were significantly higher (P < 0.05) against E. coli from 8 to 48 h and against S. aureus from 4 to 24 h with rufloxacin. UBTs for E. coli were higher (P < 0.05) for norfloxacin at early sample times (0 to 8 h) but higher for rufloxacin (P < 0.05) at sample times from 16 h on for both E. coli and S. aureus. Similar UKRs were obtained for both quinolones for 0 to 2 h and 8 to 12 h, but the UKR was maintained for 72 h with rufloxacin. The high and sustained mean levels of rufloxacin in urine (> 35 micrograms/ml), median UBTs (> 32 for E. coli and 16 for S. aureus) and UKRs for E. coli suggest prolonged urine antibacterial activity (for at least 72 h) and its use as a single 400-mg dose in the treatment of uncomplicated cystitis.


2020 ◽  
Vol 7 (1) ◽  
pp. 13 ◽  
Author(s):  
Tina Modjinou ◽  
Davy Louis Versace ◽  
Samir Abbad Andaloussi ◽  
Valérie Langlois ◽  
Estelle Renard

Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having both high mechanical resistance and flexibility. The influence of the nature of the crosslinking agent and the weight ratio of linalool on the thermo-mechanical performances were carefully evaluated. The elongation at break increases from 7% for the native PHA to 40% for PHA–linalool co-networks using a tetrafunctional cross-linking agent. The materials highlighted tremendous anti-adherence properties against Escherichia coli and Staphylococcus aureus by increasing linalool ratios. A significant decrease in antibacterial adhesion of 63% and 82% was observed for E. coli and S. aureus, respectively.


2021 ◽  
Vol 22 (17) ◽  
pp. 9214 ◽  
Author(s):  
Pardis Keikhosravani ◽  
Hossein Maleki-Ghaleh ◽  
Amir Kahaie Khosrowshahi ◽  
Mahdi Bodaghi ◽  
Ziba Dargahi ◽  
...  

The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.5, 1.0, 2.0, 4.0 wt.%) samples were investigated to find the most suitable Li content for both aspects. The synthesized nanoparticles, by the mechanical alloying method, were cold-pressed uniaxially and then sintered for 2 h at 1250 °C. Characterization using field-emission scanning electron microscopy (FE-SEM) revealed particle sizes in the range of 60 to 120 nm. The XRD analysis proved the formation of HA and Li-doped HA nanoparticles with crystal sizes ranging from 59 to 89 nm. The bioactivity of samples was investigated in simulated body fluid (SBF), and the growth of apatite formed on surfaces was evaluated using SEM and EDS. Cellular behavior was estimated by MG63 osteoblast-like cells. The results of apatite growth and cell analysis showed that 1.0 wt.% Li doping was optimal to maximize the bioactivity of HA. Antibacterial characteristics against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were performed by colony-forming unit (CFU) tests. The results showed that Li in the structure of HA increases its antibacterial properties. HA biofunctionalized by Li doping can be considered a suitable option for the fabrication of bone scaffolds due to its antibacterial and unique bioactivity properties.


2020 ◽  
Vol 35 (6) ◽  
pp. 696-708
Author(s):  
Yanan Liu ◽  
Jiawei Liu ◽  
Xiaoping Guo ◽  
Ange Lin ◽  
Yayu Wen ◽  
...  

Representative pathogenic bacteria such as Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus) are widespread in nature and pose a threat to human health. To control the propagation of these pathogens from the source, the key is to design broad-spectrum antibacterial materials to reduce the serious damage of pathogenic bacteria. At present, more and more nanoparticles are widely researched and applied due to their multi-pathway antibacterial properties, such as regulating physiology, biochemistry and physical chemistry. In this work, we synthesized a uniformly dispersed and stable spherical nanoparticle (TiO2@V2O5) synthesized by self-assembly of tianium dioxide and vanadium pentoxide. Based on its excellent photosensitive properties, TiO2@V2O5 nanoparticles have showed excellent antibacterial properties under the light irradiation due to the production of hydroxyl radicals in antibacterial and mechanism tests. In addtion, related cell and plant experiments have showed that TiO2@V2O5 nanoparticles are excellent biocompatible materials, it could be widely used in environmental pollution control, limiting the serious damage caused by pathogens.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3662
Author(s):  
Petra Peer ◽  
Jana Sedlaříková ◽  
Magda Janalíková ◽  
Liliana Kučerová ◽  
Pavel Pleva

Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.


Planta Medica ◽  
2020 ◽  
Vol 86 (15) ◽  
pp. 1089-1096
Author(s):  
Karmen Kapp ◽  
Anne Orav ◽  
Mati Roasto ◽  
Ain Raal ◽  
Tõnu Püssa ◽  
...  

AbstractMint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcussonʼs type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 – 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (−)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (−)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E. coli and 8 extracts against S. aureus. Their summary antimicrobial activity was not always in concordance with the activities of respective reference substances.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5878
Author(s):  
Yage Xing ◽  
Xingmei Liao ◽  
Xiaocui Liu ◽  
Wenxiu Li ◽  
Ruihan Huang ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 997
Author(s):  
Fernaldy Leonarta ◽  
Cheng-Kang Lee

Polyvinyl alcohol (PVA) nanofibrous membrane, consisting of separately encapsulated glucose oxidase (GOx) and glucose (Glu) nanofibers, was prepared via simultaneously electrospinning PVA/GOx and PVA/Glu dopes. The as-prepared pristine membrane could self-sustainably generate hydrogen peroxide (H2O2) only in contact with an aqueous solution. The H2O2 production level was well maintained even after storing the dry membrane at room temperature for 7 days. Cross-linking the membrane via reaction with glutaraldehyde (GA) vapor could not only prevent the nanofibrous membrane from dissolving in water but also prolonged the release of H2O2. The sustained release of H2O2 from the membrane achieved antimicrobial capability equivalent to that of 1% H2O2 against both Escherichia coli and Staphylococcus aureus. Gram(+) S. aureus cells were more susceptible to H2O2 than Gram(−) E. coli and >99% of S. aureus were killed after 1 h incubation with the membrane. Pristine and GA-crosslinked nanofibrous membrane with in situ production of H2O2 were self-sterilized in which no microorganism contamination on the membrane could be detected after 2 weeks incubation on an agar plate. The GOx/Glu membrane may find potential application as versatile antimicrobial materials in the field of biomedicine, in the food and health industries, and especially challenges related to wound healing in diabetic patients.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Jinjie Luo ◽  
Duquan Zuo ◽  
Zhenghua Deng ◽  
Anping Ji ◽  
Guofeng Xia

In this study, biodegradable polyvinyl alcohol (PVA) was blended with natural antioxidant tea polyphenols (TPs) to produce PVA/TP nanofiber films by electrospinning. The effects of heat treatment and TP incorporation on the structural and physical properties of the films were then evaluated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) revealed that the PVA/TP nanofiber film has a more compact structure and better morphology than PVA alone. In addition, the water resistance was enhanced, and the formation of hydrogen bonds between the TP and PVA molecules increased via the heat treatment. Furthermore, the mechanical, antioxygenic, and antibacterial properties of the nanofiber films were significantly improved (P < 0.05) owing to the incorporation of TP. In particular, when the mass ratio of the PVA/TP was 7:3, the elongation at break (EAB) of the film increased to 105.24% ± 2.87%, and the antioxidant value reached a maximum at 64.83% ± 5.21%. In addition, the antibacterial activity of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) increased to the maximum levels of 82.48% ± 2.12% and 86.25% ± 2.32%, respectively. In summary, our study produced a functional food packaging material that includes preservation with an acceptable bioactivity, ability to keep food fresh, and biodegradability.


Sign in / Sign up

Export Citation Format

Share Document