Soil quality audit for resource conservation in Indian agriculture

Social Change ◽  
2001 ◽  
Vol 31 (1-2) ◽  
pp. 75-86 ◽  
Author(s):  
K. V. Raman ◽  
Saroja Raman

Indian agricultural enterprise is one of the largest in terms of human capital and area of operation. It covers approximately 144 mha arable land, more than 60% of the population, and accounts for 40 % of the GDP. Hence its role in overall economic ecological and social development is very critical. Indian agricultural scene is a mix of traditional, low input, subsistence agriculture by the resource-poor farmer and science-based, high-input intensive farming by the rich farmers. Both of them have a share in the impairment of the environment. Because pockets of very high input cultivation are still limited, the pollution due to agricultural waste, excess fertilizers and pesticides are still not as wide-spread and alarming as they are in the west. Soil loss and degradation is the most serious environmental concern generated by the harsh geographical features of the country and by agricultural enterprises, both exacerbated by over-straining animal and human population. Almost 70% of the geographical area is prone to water and wind erosion and other stresses. 5334 million tonnes of soil is eroded annually and 5.3-8.4 million tonnes of the plant nutrients are lost. If this trend continues, one-third of the arable land is likely to be lost. For the fragile and slopy lands, soil conservation measures are being taken up on an extensive scale through water shed approach. These, however, have not been very effective or friendly for over 78% of the small and marginal farmers. Soil Quality, a holistic concept encompassing productivity, environmental quality, and human and animal health, has been developed recently for validating and auditing sustainable agriculture. Several physical, chemical and biological indicators like pH, EC, nutrient status, infiltration rate, soil structure, soil organic carbon etc. have been identified as indicators for measuring soil quality. This approach can be initiated in some places in India to monitor the negative impacts of certain currently prevailing agricultural practices, and facilitate sustainable agriculture through alternate farming protocols. Locale specific, farmer-friendly and conducive packages should be evolved monitored and evaluated in collaboration with the small farmer so that soil resources are conserved or upgraded for future generations.

2020 ◽  
Vol 12 (22) ◽  
pp. 9398 ◽  
Author(s):  
Ugo De Corato

The major issues related to indiscriminate land use are overall related to topsoil depletion, groundwater contamination, plant disease outbreaks, air pollution and greenhouse gas emissions. Currently, global vision focused on the environmental impact and use of eco-friendly strategies are increasing. The design of new agroecosystems and food systems are fundamental to make more sustainability in soil management systems by improving the release of advanced ecosystems services for farmers. Sustainable agriculture utilizes natural renewable resources in the best way due to their intrinsic features by minimizing harmful impact on the agroecosystems. Farmers should sustain or even increase the soil organic matter (SOM) content overall in depleted, semiarid and arid soils. Nutrients recycled from agro-waste into the soil using residual biomass sources should be endorsed by diversified agriculture and governmental policies in which livestock and crop production are spatially integrated. Many good agricultural practices that growers may use to promote soil quality and soil health by minimizing water use and soil pollution on farms are yet available from past years. Exploration of the natural soil biodiversity and manipulation of soil microbiota by continuous amendment with compost, biochar and digestate represents a pre-requisite to develop more efficient microbial consortia useful for soils and crops. On the other hand, more attention is proven regarding the sustainable use of useful microorganisms employed as pure inoculants in rhizosphere. Among them, plant growth-promoting rhizobacteria and biological control agents cover the major groups of tailored inoculants in order to rationalize the internal recycling of nutrients and their energy recovery, or to improve the soil quality and plant health thanks to their diversified mechanisms of action and complex interactions between SOM, microbiota and plant roots in the rhizosphere.


Author(s):  
Jessica A. Rubin ◽  
Josef H. Görres

During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans’ damage to Earth’s freshwater. We also identify areas where research is needed.


2018 ◽  
Vol 36 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Barbara Kiełbasa ◽  
Stefan Pietrzak ◽  
Barbro Ulén ◽  
Jan-Olof Drangert ◽  
Karin Tonderski

AbstractThe paper presents the results of a scientific project focused on limiting nutrient losses from farms by introducing measures to apply fertilizers in a more sustainable way. It is a case study of selected aspects of farm management, focussing on the issue of sustainable agriculture and their tools. The main aim of the study was to analyse and evaluate farmers’ knowledge of the fertilizing process and its aspects, as well as applying sustainable agricultural activities on farms. The study emphasised the importance of nutrient management, as very important for sustainable farming. Also, the links between farmers’ opinions and their activities were analysed. The important issue concerned measures for sustainable farm management introduced on the farms, as well as measures to limit nutrient leaching into groundwater. Twenty-eight farmers from two regions in Poland were interviewed about their perceptions for the case study. In general, the farmers considered their farm activities to be more sustainable than in the past. They demonstrated an understanding of the general idea of sustainable agriculture. However, many farmers still demonstrated a poor grasp of nutrient flows and nutrient balances on farms. Their knowledge and perception was based on general, rather than specific knowledge gleaned from an academic/vocational course. The farmers demonstrated a realization that there were some new, or low-cost measures that could be introduced to make management more sustainable and pro-environmental, but there was still a need for wider adoption of sustainable agricultural practices.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
E. del-Val ◽  
E. Ramírez ◽  
M. Astier

Abstract Background Animal communities are vulnerable to agricultural practices. Intensive farming considerably reduces overall arthropod diversity, but not necessarily pest abundance. Natural control of herbivores in agroecosystems is accomplished by predators and parasitoids, but in intensified agricultural regimes, the chemical control used to reduce pest abundances also affects pests’ natural enemies. To achieve more sustainable agriculture, there is a need to better understand the susceptibility of predators to conventional management. Methods In order to quantify the arthropod diversity associated with different schemes of agricultural management of maize, we evaluated agricultural fields under two contrasting management regimens in Michoacán, México during the spring–summer cycle of 2011. Arthropod communities were evaluated in plots with conventional high-input versus low-input agriculture in two sites—one rainfed and one with irrigation. The experimental units consisted of twelve 1 ha agricultural plots. To sample arthropods, we used 9 pitfall traps per agricultural plot. Results During the sampling period, we detected a total of 14,315 arthropods belonging to 12 Orders and 253 morphospecies. Arthropod community composition was significantly different between the sites, and in the rain-fed site, we also found differences between management practices. Predators, particularly ants, were more abundant in low-input sites. Herbivory levels were similar in all fields, with an average of 18% of leaf area lost per plant. Conclusions Our results suggest that conventional farming is not reducing herbivore abundances or damage inflicted to plants, but is affecting arthropod predators. We discuss repercussions for sustainable agriculture.


2021 ◽  
Vol 748 (1) ◽  
pp. 012039
Author(s):  
Tualar Simarmata ◽  
M Khais Proyoga ◽  
Diyan Herdiyantoro ◽  
Mieke R Setiawati ◽  
Kustiwa Adinata ◽  
...  

Abstract Climate change (CC) is real and threatens the livelihood of most smallholder farmers who reside along the coastal area. The CC causes the rise of temperature (0.2-0.3°C/decade) and sea level (SRL = 5 mm/year), drought and floods to occur more frequently, the change of rainfall intensity and pattern and shifting of planting season and leads to the decreasing of crop yield or yield loss. Most of the paddy soil has been exhausted and degraded. About 50% of the rice field along the coastline is effected by high salinity and causes significant yield losses. The research was aimed to summarize the results of the system of organic based aerobic rice intensification (known as IPATBO) and of two climate filed school (CFS) in Cinganjeng and Rawapu that situated along the coastline of Pangandaran and Cilacap. Both IPATBO and CFS have adopted the strategy of climate-resilient sustainable agriculture (CRSA) for restoring the soil health and increasing rice productivity, and as well as to empower the farmer community. The implementation of IPATBO (2010-2020) in the different areas has increased the soil health, fertilizers, and water efficiency (reduce inorganic by 25-50%, and water by 30-40%) and increased rice productivity by at least 25-50%. Both CFS in Ciganjeng and Rawaapu were able to improve soil fertility, increase rice productivity, and farmer capacity. This result concludes the agro-ecological based CRSA and CFS can be adopted for the increasing the resilient of agricultural practices and farmers in adapting to climate change


2021 ◽  
Vol 48 (3) ◽  
pp. 186-209
Author(s):  
Oscar Melo ◽  
◽  
Nadia Báez ◽  
Daniela Acuña ◽  
◽  
...  

Given the increasing demand for agricultural products and the environmental degradation that current agricultural practices generate, there is an urgent need to change the activity. Sustainable agriculture emerges as an attractive alternative to mitigate the adverse effects of the activity on the environment, increase its resilience to global change, and increase the current population’s quality of life without sacrificing that of future generations. However, identifying effective policies that can achieve these goals remains elusive. In Chile, this sector has been one of the drivers of growth and poverty reduction but still faces many environmental and social challenges, and there is a growing public demand for achieving sustainability from an economic, environmental, and social perspective. Public and private institutions have made relevant efforts to increase Chilean agriculture sustainability. However, the need to transition towards sustainable agriculture is still not recognized by all stakeholders. In this article, we review current challenges and policies to achieve a more sustainable agriculture in Chile.


2020 ◽  
Vol 28 (1) ◽  
pp. 57-64
Author(s):  
Almobarak Falak ◽  
Lidia A. Mezhova

Central Chernozem is one of the largest agricultural regions in Russia. As a result of the long period of natural resources use the anthropogenic load on agricultural lands is increasing. The result of agricultural nature management is the increase of land degradation processes. Voronezh Region has a high agro-climatic potential, most of the territory is occupied by agricultural land, arable land prevails among them. Soil degradation is the most acute problem. There is a need to assess the impact of agricultural natural resources use on land resources of the region. Modular coefficients for assessment of geochemical impact of agriculture and animal husbandry on agricultural systems are proposed. The developed factor is a tool for identification of negative land use processes and environmental problems. The article deals with the issues of ecologically oriented, scientifically grounded strategy of agricultural nature management. Ecological approach to assessment of soil quality in the future will develop a strategy for balanced land use. The article has a scientific and practical character and is aimed at the development of methods of ecological assessment of soil quality. The proposed methodological approach identifies destructive processes in soils. For ecologically oriented strategy of development of regions it is important to define maximum allowable agricultural loads for preservation of sustainable environment.


2020 ◽  
pp. 31-67
Author(s):  
V. S. Stolbovoy ◽  
A. M. Grebennikov

The study presents three groups of Soil Quality Indicators (SQI) of arable lands in the Russian Federation, such as agroclimate conditions, soil parameters and negative soil characteristics. The selection of SQI meets the requirements of the crop growth model for calculating the standard crop yield. The application of SQI in the Grain Equivalent Model allows ranking quality of the soils of agricultural lands in the country. The share of the best quality Chernozems with the standard yield of grain crops exceeding 4 t/ha is about 10%. At the same time, arable Chernozems occupy nearly 66% of total area of agricultural lands. More than 74% of the arable lands including podzolized and leached Chernozems in the northern part and Chernozems southern in the southern part of the agricultural zone are characterized by medium quality with the standard yield of grain crops 2-4 t/ha. About 10% of the arable land occupied by Chestnut solonetzic and saline soils are of poorer quality with the standard yield of grain crops less than 1 t/ha. The proposed indicators are included in the government programs for valuating and monitoring the quality of agricultural lands. The universal validity of indicators is a basis for the development of a new generation of standards for the protection and rational use of soils based on modern digital technologies and GIS approaches.


2022 ◽  
pp. 233-250
Author(s):  
Julius Eyiuche Nweze ◽  
Justus Amuche Nweze ◽  
Shruti Gupta

With the increasing demands for foods and other agriculture-based products, sustainable agricultural practices are the cornerstone for improving low-input agricultural production. In contrast to crop production, plant-microorganism interaction (PMI) plays a crucial role. PMI significantly raises productivity as well as maintaining the overall health of the crop. During harsh and extreme physiological conditions, plant-associated extremophilic microbes (PAEM) are known to contribute to crop production, survivability, and fitness. Thus, the application of extremophiles either in the form of biofertilizer or biopesticides is highly beneficial. Extremophiles have been adapted to withstand diverse harsh environmental conditions. They possess unique mechanisms at the molecular level to produce enormous potential extremozymes and bioactive compounds. Consequently, extremophiles represent the foundation of efficient and sustainable agriculture. This chapter introduces the significance and application of plant-associated extremophilic microbes in sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document