A Human Corneal Equivalent Constructed from SV40-immortalised Corneal Cell Lines

2005 ◽  
Vol 33 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Michaela Zorn-Kruppa ◽  
Svitlana Tykhonova ◽  
Gazanfer Belge ◽  
Jürgen Bednarz ◽  
Horst A. Diehl ◽  
...  

Within the last decade, extensive research in the field of tissue and organ engineering has focused on the development of in vitro models of the cornea. The use of organotypic, three-dimensional corneal equivalents has several advantages over simple monolayer cultures. The aim of this study was to develop a corneal equivalent model composed of the same cell types as in the natural human tissue, but by using immortalised cell lines to ensure reproducibility and to minimise product variation. We report our success in the establishment of an SV40-immortalised human corneal keratocyte cell line (designated HCK). A collagen matrix, built up with these cells, displayed the morphological characteristics of the human stromal tissue and served as a biomatrix for the immortalised human corneal epithelial and endothelial cells. Histological cross-sections of the whole-cornea equivalents resemble human corneas in tissue structure. This organotypic in vitro model may serve as a research tool for the ophthalmic science community, as well as a model system for testing for eye irritancy and drug efficacy.

2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Sadman Sakib ◽  
Anna Voigt ◽  
Taylor Goldsmith ◽  
Ina Dobrinski

Abstract Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.


Author(s):  
Cristina Di Giorgio ◽  
Rosalinda Roselli ◽  
Michele Biagioli ◽  
Silvia Marchianò ◽  
Eleonora Distrutti ◽  
...  

Abstract: Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.


Development ◽  
2021 ◽  
Vol 148 (16) ◽  
Author(s):  
Pablo Hofbauer ◽  
Stefan M. Jahnel ◽  
Sasha Mendjan

ABSTRACT Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.


2020 ◽  
Vol 3 (4) ◽  
pp. 74
Author(s):  
Valentina Citi ◽  
Eugenia Piragine ◽  
Simone Brogi ◽  
Sara Ottino ◽  
Vincenzo Calderone

The human eye is a specialized organ with a complex anatomy and physiology, because it is characterized by different cell types with specific physiological functions. Given the complexity of the eye, ocular tissues are finely organized and orchestrated. In the last few years, many in vitro models have been developed in order to meet the 3Rs principle (Replacement, Reduction and Refinement) for eye toxicity testing. This procedure is highly necessary to ensure that the risks associated with ophthalmic products meet appropriate safety criteria. In vitro preclinical testing is now a well-established practice of significant importance for evaluating the efficacy and safety of cosmetic, pharmaceutical, and nutraceutical products. Along with in vitro testing, also computational procedures, herein described, for evaluating the pharmacological profile of potential ocular drug candidates including their toxicity, are in rapid expansion. In this review, the ocular cell types and functionality are described, providing an overview about the scientific challenge for the development of three-dimensional (3D) in vitro models.


Author(s):  
Jillian R. H. Wendel ◽  
Xiyin Wang ◽  
Lester J. Smith ◽  
Shannon M. Hawkins

Endometriosis occurs when endometrial-like tissue grows outside the uterine cavity, leading to pelvic pain, infertility, and increased risk of ovarian cancer. The present study describes the optimization and characterization of cellular spheroids as building blocks for Kenzan scaffold-free method biofabrication and proof-of-concept models of endometriosis and the endometriotic microenvironment. The spheroid building blocks must be a specific diameter (~500 m), compact, round, and smooth to withstand Kenzan biofabrication. Under optimized spheroid conditions for biofabrication, the endometriotic epithelial-like cell line, 12Z, expressed high levels of estrogen-related genes and secreted high amounts of endometriotic inflammatory factors that were independent of TNF stimulation. Heterotypic spheroids, composed of 12Z and T-HESC, an immortalized endometrial stromal cell line, self-assembled into a biologically relevant pattern, consisting of epithelial cells on the outside of the spheroids and stromal cells in the core. 12Z spheroids were biofabricated into large three-dimensional constructs alone, with HEYA8 spheroids, or as heterotypic spheroids with T-HESC. These three-dimensional biofabricated constructs containing multiple monotypic or heterotypic spheroids represent the first scaffold-free biofabricated in vitro models of endometriosis and the endometriotic microenvironment. These efficient and innovative models will allow us to study the complex interactions of multiple cell types within a biologically relevant microenvironment.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 814
Author(s):  
Justyna Struzik ◽  
Lidia Szulc-Dąbrowska ◽  
Matylda B. Mielcarska ◽  
Magdalena Bossowska-Nowicka ◽  
Michał Koper ◽  
...  

Dendritic cells (DCs) and macrophages are the first line of antiviral immunity. Viral pathogens exploit these cell populations for their efficient replication and dissemination via the modulation of intracellular signaling pathways. Disruption of the noncanonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling has frequently been observed in lymphoid cells upon infection with oncogenic viruses. However, several nononcogenic viruses have been shown to manipulate the noncanonical NF-κB signaling in different cell types. This study demonstrates the modulating effect of ectromelia virus (ECTV) on the components of the noncanonical NF-κB signaling pathway in established murine cell lines: JAWS II DCs and RAW 264.7 macrophages. ECTV affected the activation of TRAF2, cIAP1, RelB, and p100 upon cell treatment with both canonical and noncanonical NF-κB stimuli and thus impeded DNA binding by RelB and p52. ECTV also inhibited the expression of numerous genes related to the noncanonical NF-κB pathway and RelB-dependent gene expression in the cells treated with canonical and noncanonical NF-κB activators. Thus, our data strongly suggest that ECTV influenced the noncanonical NF-κB signaling components in the in vitro models. These findings provide new insights into the noncanonical NF-κB signaling components and their manipulation by poxviruses in vitro.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 33-33
Author(s):  
Ian Vela ◽  
Dong Gao ◽  
Anuradha Gopalan ◽  
Andrea Sboner ◽  
Eva Undvall ◽  
...  

33 Background: The inability to propagate patient-derived prostate cancer cells in vitro is a major impediment in the mechanistic understanding of tumorigenesis and therapeutic response. In order to generate accurate in vitro models that represent the diversity of in situ prostate cancer, we have developed a three-dimensional “organoid” system to culture metastasis samples and integrated it into our precision medicine workflow of attaining and characterizing pre-treatment biopsies. Methods: Biopsy samples of prostate cancer metastases, both soft tissue and bone, acquired at the time of therapeutic or diagnostic interventions following informed consent and institutional review board approval were obtained from two institutions. Samples were digested in Type II Collagenase (Gibco) and re-suspended in growth factor reduced Matrigel (BD), plated on plastic, and overlaid with prostate culture media (PCM). PCM consists of serum free Advanced DMEM/F12 (Gibco) with multiple growth factors optimized to propagate benign primary prostate cells. Cultures were maintained at 37°C in 5% CO2. Results: In the initial 51 samples, 15 continuous organoid cultures (29%) were established from distinct sites (9 of 32 bone, 6 of 19 soft). Tumor content of the biopsy represents a major determinant of organoid growth. Once established, organoids propagate indefinitely with different kinetics (approximately 48 hours to 1 week doubling time), and can be cryopreserved. Histological analysis shows that the organoids recapitulate the structure of the in situ cancer and genomic analysis using array CGH and whole-exome sequencing (WES) shows the presence of typical copy number alterations including TMPRSS2-ERG interstitial deletion, PTEN loss, CHD1 loss, and AR amplification. WES of two organoid/metastasis pairs shows that the growth conditions do not generate additional mutations. Conclusions: This novel tissue culture technique enables the development of new cell lines derived from metastatic deposits. This advance will facilitate research by availing new and varied cell lines, which will hopefully be more closely aligned to the spectrum of behavior of the clinical disease in comparison to the limited and problematic cell line models currently available.


2018 ◽  
Vol 29 (14) ◽  
pp. 1704-1717 ◽  
Author(s):  
Anushree C. Gulvady ◽  
Fatemeh Dubois ◽  
Nicholas O. Deakin ◽  
Gregory J. Goreczny ◽  
Christopher E. Turner

The focal adhesion proteins Hic-5 and paxillin have been previously identified as key regulators of MDA-MB-231 breast cancer cell migration and morphologic mesenchymal-amoeboid plasticity in three-dimensional (3D) extracellular matrices (ECMs). However, their respective roles in other cancer cell types have not been evaluated. Herein, utilizing 3D cell–derived matrices and fibronectin-coated one-dimensional substrates, we show that across a variety of cancer cell lines, the level of Hic-5 expression serves as the major indicator of the cells primary morphology, plasticity, and in vitro invasiveness. Domain mapping studies reveal sites critical to the functions of both Hic-5 and paxillin in regulating phenotype, while ectopic expression of Hic-5 in cell lines with low endogenous levels of the protein is sufficient to induce a Rac1-dependent mesenchymal phenotype and, in turn, increase amoeboid-mesenchymal plasticity and invasion. We show that the activity of vinculin, when coupled to the expression of Hic-5 is required for the mesenchymal morphology in the 3D ECM. Taken together, our results identify Hic-5 as a critical modulator of tumor cell phenotype that could be utilized in predicting tumor cell migratory and invasive behavior in vivo.


Author(s):  
Valentina Citi ◽  
Eugenia Piragine ◽  
Simone Brogi ◽  
Sara Ottino ◽  
Marco Sansò ◽  
...  

Human eye is a specialized organ with complex anatomy and physiology, because it is characterized by different cell types with specific physiological functions. Given the complexity of the eye, ocular tissues are finely organized and orchestrated. In the last few years many in vitro models have been developed, in order to meet the 3Rs principle (Replacement, Reduction and Refinement) for eye toxicity testing which is necessary to ensure that the risks associated with ophthalmic products meet appropriate safety criteria and are clearly labelled. In vitro preclinical testing is now a well-established practice of significant importance for evaluating the efficacy and safety of cosmetic, pharmaceutical, and nutraceutical products. Along with in vitro testing, also computational procedures, herein described, for evaluating the pharmacological profile of potential ocular drug candidates including their toxicity, are in rapid expansion. In this review the ocular cell types and functionality are described providing an overview about the scientific challenge for the development of three-dimensional in vitro models.


Author(s):  
Valentina Citi ◽  
Eugenia Piragine ◽  
Simone Brogi ◽  
Sara Ottino ◽  
Vincenzo Calderone

Human eye is a specialized organ with complex anatomy and physiology, because it is characterized by different cell types with specific physiological functions. Given the complexity of the eye, ocular tissues are finely organized and orchestrated. In the last few years many in vitro models have been developed, in order to meet the 3Rs principle (Replacement, Reduction and Refinement) for eye toxicity testing. This procedure is highly necessary to ensure that the risks associated with ophthalmic products meet appropriate safety criteria. In vitro preclinical testing is now a well-established practice of significant importance for evaluating the efficacy and safety of cosmetic, pharmaceutical, and nutraceutical products. Along with in vitro testing, also computational procedures, herein described, for evaluating the pharmacological profile of potential ocular drug candidates including their toxicity, are in rapid expansion. In this review the ocular cell types and functionality are described providing an overview about the scientific challenge for the development of three-dimensional in vitro models.


Sign in / Sign up

Export Citation Format

Share Document