scholarly journals Some Surface Properties of Activated Carbons Prepared by Gasification with Different Gases

1997 ◽  
Vol 15 (9) ◽  
pp. 707-715 ◽  
Author(s):  
Amina A. Attia

A non-activated carbon ‘D’ was obtained by carbonizing date pits at 773 K in a limited supply of air. Activated carbons were obtained by gasifying portions of ‘D’ with air at 773 K, carbon dioxide at 1123 K, or steam at 1173 K, all to different burn-offs between 15% and 60%. The adsorption of nitrogen at 77 K and of carbon dioxide at 298 K was investigated using a volumetric adsorption apparatus of a conventional type. The adsorption of water vapour at 298 K and the chemisorption of pyridine at 423 K was followed by means of quartz spring balances. Gasification with oxidizing gases increased the surface area and total pore volume, as measured by nitrogen or carbon dioxide adsorption. In most cases, comparable surface areas were measured by nitrogen and carbon dioxide. The adsorption of water vapour depended on the percentage burn-off and the gasification conditions. Chemisorption of pyridine at 423 K was found to be related to the chemistry of the surface rather than to the surface area or total pore volume.

1946 ◽  
Vol 24b (4) ◽  
pp. 109-123 ◽  
Author(s):  
M. N. Fineman ◽  
R. M. Guest ◽  
R. McIntosh

An examination of the influence of the structure of charcoal adsorbents on the form of the water adsorption isotherm has been attempted by determinations of (1) surface areas of a series of charcoals of varying degrees of activation using nitrogen and butane as adsorbates; (2) total pore volume of each adsorbent sample by density measurements in helium and in mercury; (3) density of adsorbents when immersed in water; (4) adsorption isotherms for water vapour; and (5) surface areas of charcoals partly saturated with water vapour.The evidence appears to suggest that certain very small and certain very large voids in charcoal are not occupied by water vapour at any value of the relative pressure. The former, 10% by volume, are important in terms of surface area; the latter, 30% by volume, influence pore volume calculations. An explanation of the shape of the water adsorption isotherm is attempted in the light of these facts. Estimates of the submicro, micro, and macro pore sizes show fair agreement when these are based upon either the capillary condensation theory or measurements of the total area and volume of the charcoal pores.


2019 ◽  
Vol 20 (46) ◽  
pp. 24-28
Author(s):  
Batkhishig Damdin ◽  
Barnasan Purevsuren ◽  
Yuanli Zhang ◽  
Haizhen Sun ◽  
Ariunaa Alyeksandr ◽  
...  

Activation characteristics of four different Mongolian coals were investigated. The coals were carbonized at temperatures of 550 °C and the obtained samples were activated by preheated steam. The pore size, pore volume and surface areas of all activated carbons (AC) have been determined by adsorption of nitrogen (N2) gas. The BET surface areas of Aduunchuluun (ACAC), Shivee Ovoo (SCAC), Baganuur (BCAC) coal and Ulaan Ovoo coals (UCAC) are 283, 205, 251 and 460 m2/g respectively. Langmuir surface area is 283 m2/g of ACAC, 230 m2/g of SCAC, 537 m2/g in UCAC and 254 m2/g in BCAC.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 896 ◽  
Author(s):  
Hye-Min Lee ◽  
Kwan-Woo Kim ◽  
Young-Kwon Park ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.


2011 ◽  
Vol 194-196 ◽  
pp. 2472-2479 ◽  
Author(s):  
Bao Lin Xing ◽  
Chuan Xiang Zhang ◽  
Lun Jian Chen ◽  
Guang Xu Huang

Activated carbons (ACs) were prepared from lignite by microwave (MW) and electrical furnace (EF) heating with KOH as activation agent. In order to compare pore structures and electrochemical performances of ACs prepared by both heating methods, the ACs were characterized by N2 adsorption at 77K, X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical performances of Electrochemical capacitors (ECs) with ACs as electrodes in 3mol/L KOH electrolyte were evaluated by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the pore structures of ACs prepared by MW and EF heating significantly enhance when the weight ratio of KOH to coal increases from 2 to 4. The BET specific surface area, total pore volume, the ratio of mesopore and average pore diameter of ACs prepared by MW heating (denoted as AC-MW4) reaches 2094m2/g, 1.193cm3/g, 53.6%, 2.28nm when the weight ratio of KOH to coal is 4, and ACs prepared by EF heating (denoted as AC-EF4) reaches 2580m2/g, 1.683cm3/g, 67.3%, 2.61nm. The ECs with AC-MW4 and AC-EF4 as electrodes present a high specific capacitance of 348F/g and 377F/g at a current density of 50mA/g, and still remain 325F/g and 350F/g after 500 cycles, respectively. Although the specific surface area, total pore volume and specific capacitance of ACs prepared by MW heating are slightly lower than EF heating, taking into account the heating time in the activation process, ACs prepared by EF heating needs approximate 140min, while MW heating only needs 10min, which have demonstrated that microwave heating technology is a promising and efficient technique to prepare ACs.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 673
Author(s):  
Byeong-Hoon Lee ◽  
Hye-Min Lee ◽  
Dong Chul Chung ◽  
Byung-Joo Kim

Kenaf-derived activated carbons (AKC) were prepared by H3PO4 activation for automobile canisters. The microstructural properties of AKC were observed using Raman spectra and X-ray diffraction. The textural properties were studied using N2/77 K adsorption isotherms. Butane working capacity was determined according to the ASTM D5228. From the results, the specific surface area and total pore volume of the AKC was determined to be 1260–1810 m2/g and 0.68–2.77 cm3/g, respectively. As the activation time increased, the butane activity and retentivity of the AKC increased, and were observed to be from 32.34 to 58.81% and from 3.55 to 10.12%, respectively. The mesopore ratio of activated carbon increased with increasing activation time and was observed up to 78% at 973 K. This indicates that butane activity and retentivity could be a function not only of the specific surface area or total pore volume, but also of the mesopore volume fraction in the range of 2.8–3.8 nm and 5.5-6.5 nm of adsorbents, respectively. The AKC exhibit enhanced butane working capacity compared to commercial activated carbon with the high performance of butane working capacity due to its pore structure having a high mesopore ratio.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7640-7647
Author(s):  
Yan Luo ◽  
Kang Wang ◽  
Ling Fei

Porous carbons with a high porosity were successfully produced from fast pyrolysis pine wood char via a thermochemical method in which KOH was used as chemical activator. The effects of various weight ratios of KOH to pyrolysis char (0.65:1, 0.7:1, 1.0:1, 1.35:1, and 1.7:1) on the physical properties of activated carbons were investigated. When the weight ratio of KOH to pyrolysis char was 1.35:1, the prepared activated carbon had the highest surface area of 1140 m2/g with a total pore volume of 0.71 cm3/g, a microporous surface area of 957 m2/g, and a microporous specific volume of 0.51 cm3/g. As the weight ratio of KOH to pyrolysis char increased from 0.65 to 1.35, the prepared activated carbon had increases in total surface area, total pore volume, microporous surface area, and specific volume of micropores. However, there was a reverse trend when the weight ratio of KOH to pyrolysis char was higher than 1.35. The use of nitrogen as a flow gas resulted in much more developed activated carbon than without nitrogen. The experiment results suggested that activated carbon with high surface area could be prepared from pyrolysis char by adjusting the activation conditions.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1382 ◽  
Author(s):  
Dmitry Alentiev ◽  
Dariya Dzhaparidze ◽  
Natalia Gavrilova ◽  
Victor Shantarovich ◽  
Elena Kiseleva ◽  
...  

New microporous homopolymers were readily prepared from norbornadiene-2,5, its dimer and trimer by addition (vinyl) polymerization of the corresponding monomers with 60–98% yields. As a catalyst Pd-N-heterocyclic carbene complex or Ni(II) 2-ethylhexanoate activated with Na+[B(3,5-(CF3)2C6H3)4]− or methylaluminoxane was used. The synthesized polynorbornenes are cross-linked and insoluble. They are glassy and amorphous polymers. Depending on the nature of the catalyst applied, BET surface areas were in the range of 420–970 m2/g. The polymers with the highest surface area were obtained in the presence of Pd-catalysts from the trimer of norbornadiene-2,5. The total pore volume of the polymers varies from 0.39 to 0.79 cm3/g, while the true volume of micropores was 0.14–0.16 cm3/g according to t-plot. These polymers gave CO2 uptake from 1.2 to 1.9 mmol/g at 273 K and 1 atm. The porous structure of new polymers was also studied by means of wide-angle X-ray diffraction and positron annihilation lifetime spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document