scholarly journals Immersion Heats of Active Carbons in Water and Organic Substances

1993 ◽  
Vol 10 (1-4) ◽  
pp. 27-33 ◽  
Author(s):  
M.L. Goubkina ◽  
N.S. Polyakov ◽  
L.I. Tatarinova

The immersion heats of two active carbon (AC) samples in water and organic substances with molecules of different size have been investigated. A molecular sieve effect was established. It has been shown that changes in the immersion heats of the active carbons correspond to pore structure characteristics such as the size distribution of the micropores. The immersion heats of moistened active carbons in liquids have also been investigated, and the heat balance of the process calculated.

1994 ◽  
Vol 11 (1) ◽  
pp. 15-29 ◽  
Author(s):  
J.K. Garbacz ◽  
G. Rychlicki ◽  
A.P. Terzyk

A comparison of both isosteric and differential heats of single gas adsorption on microporous active carbons has been undertaken. The experimental data obtained indicate strong differences between the analysed quantities for the studied adsorbents. It is deduced from thermodynamical considerations that a molecular sieve effect is responsible for these differences.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4038 ◽  
Author(s):  
Jungsoo Lee ◽  
Young Cheol Choi

Characterization of porous materials is essential for predicting and modeling their adsorption performance, strength, and durability. However, studies on the optimization of the pore structure to efficiently remove pollutants in the atmosphere by physical adsorption of construction materials have been insufficient. This study investigated the pore structure characteristics of foam composites. Porous foam composites were fabricated using foam composite with high porosity, open pores, and palm shell active carbon with micropores. The content was substituted 5%, 10%, 15%, and 20% by volume of cement. From the measured nitrogen adsorption isotherm, the pore structure of the foam composite was analyzed using the Brunauer–Emmett–Teller (BET) theory, Barrett–Joyner–Halenda (BJH) analysis, and Harkins-jura adsorption isotherms. From the analysis results, it was found that activated carbon increases the specific surface area and micropore volume of the foam composite. The specific surface area and micropore volume of the foam composite containing 15% activated carbon were 106.48 m2/g and 29.80 cm3/g, respectively, which were the highest values obtained in this study. A foam composite with a high micropore volume was found to be effective for the adsorption of air pollutants.


2020 ◽  
Vol 29 (11) ◽  
pp. 50-55
Author(s):  
V.I. Maklyukov ◽  
◽  
E.O. Gerasimova ◽  
N. V. Labutina ◽  
E.N. Rogozkin ◽  
...  

The article considers the results of research conducted during electric contact heating of rye-wheat dough pieces. It is established that the electrical conductivity of the crumb dough does not depend on the total humidity of the material, but mainly on the amount of free moisture. Using the current and temperature graphs, you can imagine how free moisture changes during the baking process and the influence of the thermophysical and colloidal process on the change in the value of free moisture. Experimentally determined the amount of heat that is spent on baking 1 kg of bread. The accuracy of the theoretical calculation of this parameter in the heat balance of the baking chamber is confirmed.


2020 ◽  
pp. 56-58
Author(s):  
P.V. Gubarev ◽  
D.V. Glazunov ◽  
V.G. Ruban ◽  
A.S. Shapshal

The thermal calculation of the locomotive traction engine collector is proposed. The equations of the heat balance of its elements are obtained taking into account the cooling air. The calculation results and experimental data of thermal imaging control are presented. Keywords: traction electric motor, collector, thermal calculation, thermal imaging control. [email protected]


1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


1984 ◽  
Vol 49 (12) ◽  
pp. 2721-2738 ◽  
Author(s):  
Ondřej Kadlec ◽  
Jerzy Choma ◽  
Helena Jankowska ◽  
Andrzej Swiatkowski

This paper describes the algorithm of numerical evaluation of the parameters of the pore structure of adsorbents ( the micro, mezo and macropores). The structure of individual types of pores is described with the equation proposed by one of the present authors and giving the total distribution function of the pores with respect to their radii. The reliability of the suggested algorithm was verified in a number of calculations using a specially developed program. The results of the analysis and characterization of three different specimens of active carbon are shown as an example.


2013 ◽  
Vol 676 ◽  
pp. 321-324
Author(s):  
Lei Guo ◽  
Qun Zhan Li

Accidents of icing on catenary have great impacts on normal operation of trains. An on-line anti-icing technology used static var generator (SVG) for catenary was proposed, which can prevent icing formation without interrupting trains normal operation. The heat balance equations for catenary were solved, whose results were compared with data provided by TB/T 3111 and testing show the equation was correct. The simulation model based on Matlab was bulit , whose results and analysis show the correctness of the method.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Sign in / Sign up

Export Citation Format

Share Document