scholarly journals Region-specific permeability of the blood–brain barrier upon pericyte loss

2017 ◽  
Vol 37 (12) ◽  
pp. 3683-3694 ◽  
Author(s):  
Roberto Villaseñor ◽  
Basil Kuennecke ◽  
Laurence Ozmen ◽  
Michelle Ammann ◽  
Christof Kugler ◽  
...  

The blood–brain barrier (BBB) regulates differing needs of the various brain regions by controlling transport of blood-borne components from the neurovascular circulation into the brain parenchyma. The mechanisms underlying region-specific transport across the BBB are not completely understood. Previous work showed that pericytes are key regulators of BBB function. Here we investigated whether pericytes influence BBB permeability in a region-specific manner by analysing the regional permeability of the BBB in the pdgf-b ret/ret mouse model of pericyte depletion. We show that BBB permeability is heterogeneous in pdgf-b ret/ret mice, being significantly higher in the cortex, striatum and hippocampus compared to the interbrain and midbrain. However, we show that this regional heterogeneity in BBB permeability is not explained by local differences in pericyte coverage. Region-specific differences in permeability were not associated with disruption of tight junctions but may result from changes in transcytosis across brain endothelial cells. Our data show that certain brain regions are able to maintain low BBB permeability despite substantial pericyte loss and suggest that additional, locally-acting mechanisms may contribute to control of transport.

1996 ◽  
Vol 271 (6) ◽  
pp. R1594-R1601 ◽  
Author(s):  
B. S. Stonestreet ◽  
C. S. Patlak ◽  
K. D. Pettigrew ◽  
C. B. Reilly ◽  
H. F. Cserr

The ontogeny of regional blood-brain barrier function was quantified with the rate constant for influx (Ki) across the blood-brain barrier with the small molecular weight synthetic, inert hydrophilic amino acid alpha-aminoisobutyric acid (AIB) in chronically instrumented early (87 days of gestation, 60% of gestation) and late (137 days of gestation, 90% of gestation) gestation fetal, newborn (3 days of age), older (24 days of age), and adult (3 years of age) sheep. The Ki was significantly (P < 0.05) lower in the brain regions of the adult sheep and in most brain regions of newborn and older lambs compared with fetuses at 60 and 90% of gestation. The Ki exhibited regional brain heterogeneity (P < 0.05) in the five groups. The patterns of regional heterogeneity were accentuated (P < 0.05) in the younger groups. We conclude that ontogenic decreases in blood-brain barrier permeability are observed in ovine fetuses from 60% of gestation to maturity in the adult.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2021 ◽  
pp. 13-19
Author(s):  
Amita Singh ◽  
Raj Kumar ◽  
S. K. Kannaujia ◽  
Manikrishna Manikrishna ◽  
N. P. Singh

Abhrak bhasma (AB) is a type of bhasma prepared from repeated incineration of mineral mica with decoctions of about 72 herbs. The particle size of Abhrak bhasm has been shown to be in the range of 29-88 nanometers and Fe, Ca, Si, Mg and K are found to be as major constituent. Many drugs developed to treat Central Nervous System (CNS) disorders are unable to reach the brain parenchyma in therapeutically relevant concentrations. The blood brain barrier protects brain parenchyma from the uctuation of plasma composition, from pathogenic agents and maintains homeostasis of the brain parenchyma by restricting non-specic ux of ions, peptides, proteins and even cells into and out the brain. Immunohistochemistry is being widely employed as a tool for biological studies. This study is conducted to examine the change in the continuity of Blood brain barrier by using immunohistochemistry, once Abhrak bhasm drug is given in experimental animal and also to examine the histology of organs. In this study a total of 30 adult albino Wistar rats of approximately 4 months age (approx. 150-200 gms) of either sex selected randomly to see the effect of Abhrak bhasm, an ayurvedic drug on Wistar rats. The rats were weighed, marked and divided into 5 groups each consisting of six animals. In normal control group (Group E), no drug was administered and in rest of the four treated groups (Group-A,B,C,D), Abhrak bhasm @ 36 mg/kg B.wt. was administered orally once in each rat. Brain, liver, kidneys,spleen and blood samples were collected in 10% formalin solution after euthanizing the rats at 0.5,2,6 & 12 hours of Abhrak bhasma drug intervention. The alterations in any of the biochemical parameters are within the tolerable limits of liver and kidney since the dose of abhrak bhasm did not affect liver and kidneys. In the present study, the increase in ALP level may be the result of alterations in metabolisms that occurred without any signicant alteration in histology of liver. After applying the immunohistochemistry with the research markers GFAP, CD 34, S 100, GLUT-1 and RECA-1 on the rats in groups A,B,C and D, there was no change in the intensity of immunohistochemistry, with respect to control. While on applying the Occludin, the intensity of immunohistochemistry was reduced in all the treatment groups as compared to the control group. On the basis of ndings of present study it can be concluded that the therapeutic dose of Abhrak bhasma causes changes at the level of tight junctions present in blood brain barrier in rats which is shown by immunohistochemistry with occludin research marker. There is no toxic effect of drug on different organs of rats as no signicant changes in histology of organs are seen. More studies need to be done to check the permeability of blood brain barrier for Abhrak bhasma drug, like calculating its concentration in brain tissues and other vital organs of rat.


2016 ◽  
Vol 36 (5) ◽  
pp. 862-890 ◽  
Author(s):  
Hans C Helms ◽  
N Joan Abbott ◽  
Malgorzata Burek ◽  
Romeo Cecchelli ◽  
Pierre-Olivier Couraud ◽  
...  

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.


1995 ◽  
Vol 182 (4) ◽  
pp. 1037-1043 ◽  
Author(s):  
B Spellerberg ◽  
S Prasad ◽  
C Cabellos ◽  
M Burroughs ◽  
P Cahill ◽  
...  

The blood-brain barrier restricts the passage of many pharmacological agents into the brain parenchyma. Bacterial glycopeptides induce enhanced blood-brain barrier permeability when they are present in the subarachnoid space during meningitis. By presenting such glycopeptides intravenously, blood-brain barrier permeability in rabbits was enhanced in a reversible time- and dose-dependent manner to agents &lt; or = 20 kD in size. Therapeutic application of this bioactivity was evident as enhanced penetration of the antibiotic penicillin and the magnetic resonance imaging contrast agent gadolinium-diethylene-triamine-pentaacetic acid into the brain parenchyma.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi82-vi82 ◽  
Author(s):  
Ellina Schulz ◽  
Almuth F Kessler ◽  
Ellaine Salvador ◽  
Dominik Domröse ◽  
Malgorzata Burek ◽  
...  

Abstract OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.


2019 ◽  
Vol 20 (10) ◽  
pp. 2600 ◽  
Author(s):  
Masaki Ueno ◽  
Yoichi Chiba ◽  
Ryuta Murakami ◽  
Koichi Matsumoto ◽  
Ryuji Fujihara ◽  
...  

The entry of blood-borne macromolecular substances into the brain parenchyma from cerebral vessels is blocked by the blood–brain barrier (BBB) function. Accordingly, increased permeability of the vessels induced by insult noted in patients suffering from vascular dementia likely contributes to the cognitive impairment. On the other hand, blood-borne substances can enter extracellular spaces of the brain via endothelial cells at specific sites without the BBB, and can move to brain parenchyma, such as the hippocampus and periventricular areas, adjacent to specific sites, indicating the contribution of increased permeability of vessels in the specific sites to brain function. It is necessary to consider influx and efflux of interstitial fluid (ISF) and cerebrospinal fluid (CSF) in considering effects of brain transfer of intravascular substances on brain function. Two pathways of ISF and CSF are recently being established. One is the intramural peri-arterial drainage (IPAD) pathway of ISF. The other is the glymphatic system of CSF. Dysfunction of the two pathways could also contribute to brain dysfunction. We review the effects of several kinds of insult on vascular permeability and the failure of fluid clearance on the brain function.


2019 ◽  
Vol 116 (49) ◽  
pp. 24796-24807 ◽  
Author(s):  
Christine A. Schneider ◽  
Dario X. Figueroa Velez ◽  
Ricardo Azevedo ◽  
Evelyn M. Hoover ◽  
Cuong J. Tran ◽  
...  

Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii. However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood–brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168–176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.


1982 ◽  
Vol 57 (3) ◽  
pp. 394-398 ◽  
Author(s):  
Kazuo Yamada ◽  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Amami Kato ◽  
Noriko Yamada ◽  
...  

✓ Quantitative autoradiographic technique was applied in measuring blood-brain barrier (BBB) permeability of autochthonous gliomas in rats. In small tumors (less than 2 mm in diameter), no increase in BBB permeability was noted. As the tumor grew and neovascularization occurred, BBB permeability increased in the center of the tumor, and it was suggested that the BBB was partly disrupted in the neovascularized vessels. In the fully grown tumors, BBB permeability was markedly increased in the viable part of the tumor to levels similar to the choroid plexus. Yet, the BBB was partly preserved at the periphery of the tumor and in the brain adjacent to the tumor. The heterogeneity of the BBB phenomenon according to the stage of tumor growth may be a major obstacle for uptake of chemotherapeutic drugs that do not cross the BBB easily.


Sign in / Sign up

Export Citation Format

Share Document