scholarly journals Kernelized movement primitives

2019 ◽  
Vol 38 (7) ◽  
pp. 833-852 ◽  
Author(s):  
Yanlong Huang ◽  
Leonel Rozo ◽  
João Silvério ◽  
Darwin G Caldwell

Imitation learning has been studied widely as a convenient way to transfer human skills to robots. This learning approach is aimed at extracting relevant motion patterns from human demonstrations and subsequently applying these patterns to different situations. Despite the many advancements that have been achieved, solutions for coping with unpredicted situations (e.g., obstacles and external perturbations) and high-dimensional inputs are still largely absent. In this paper, we propose a novel kernelized movement primitive (KMP), which allows the robot to adapt the learned motor skills and fulfill a variety of additional constraints arising over the course of a task. Specifically, KMP is capable of learning trajectories associated with high-dimensional inputs owing to the kernel treatment, which in turn renders a model with fewer open parameters in contrast to methods that rely on basis functions. Moreover, we extend our approach by exploiting local trajectory representations in different coordinate systems that describe the task at hand, endowing KMP with reliable extrapolation capabilities in broader domains. We apply KMP to the learning of time-driven trajectories as a special case, where a compact parametric representation describing a trajectory and its first-order derivative is utilized. In order to verify the effectiveness of our method, several examples of trajectory modulations and extrapolations associated with time inputs, as well as trajectory adaptations with high-dimensional inputs are provided.

2006 ◽  
Vol 129 (6) ◽  
pp. 602-610 ◽  
Author(s):  
J. Eddie Baker

Despite the many studies devoted to it and its value as a learning tool, the Bennett linkage has never been employed as a working mechanism. It has recently found favor, however, among structural analysts as a possible unit in deployable networks owing to the potential for true spatial displacement without flexure. Although the loop can be analyzed in this application by means of purely geometrical methods, a wealth of kinematic examinations is available for more efficient treatment. The particular form that the chain must adopt as a deployable object and the special case of the linkage demanded by the purpose constitute the subject of the present exposition, which takes full advantage of prior analyses of the chain’s kinematic characteristics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jenna L. Wardini ◽  
Hasti Vahidi ◽  
Huiming Guo ◽  
William J. Bowman

Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.


2020 ◽  
Vol 156 (4) ◽  
pp. 822-861
Author(s):  
Jeremy Miller ◽  
Rohit Nagpal ◽  
Peter Patzt

We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $\mathbf{SL}_{n}(\mathbb{Z})$. This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $\mathbf{SL}_{n}(K)$ for $K$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $\mathbf{SL}_{n}(\mathbb{Z})$.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


2020 ◽  
Vol 10 (4) ◽  
pp. 1381 ◽  
Author(s):  
Xinda Wang ◽  
Xiao Luo ◽  
Baoling Han ◽  
Yuhan Chen ◽  
Guanhao Liang ◽  
...  

Sampling-based methods are popular in the motion planning of robots, especially in high-dimensional spaces. Among the many such methods, the Rapidly-exploring Random Tree (RRT) algorithm has been widely used in multi-degree-of-freedom manipulators and has yielded good results. However, existing RRT planners have low exploration efficiency and slow convergence speed and have been unable to meet the requirements of the intelligence level in the Industry 4.0 mode. To solve these problems, a general autonomous path planning algorithm of Node Control (NC-RRT) is proposed in this paper based on the architecture of the RRT algorithm. Firstly, a method of gradually changing the sampling area is proposed to guide exploration, thereby effectively improving the search speed. In addition, the node control mechanism is introduced to constrain the extended nodes of the tree and thus reduce the extension of invalid nodes and extract boundary nodes (or near-boundary nodes). By changing the value of the node control factor, the random tree is prevented from falling into a so-called “local trap” phenomenon, and boundary nodes are selected as extended nodes. The proposed algorithm is simulated in different environments. Results reveal that the algorithm greatly reduces the invalid exploration in the configuration space and significantly improves planning efficiency. In addition, because this method can efficiently use boundary nodes, it has a stronger applicability to narrow environments compared with existing RRT algorithms and can effectively improve the success rate of exploration.


Author(s):  
John A. Roebuck

Translation into English has recently been completed for excerpts on ear and craniofacial anthropometry from an innovative, unpublished Bulgarian-language doctoral thesis written in 1986 by a plastic surgeon, M. M. Madzharov, MD-PhD; MD-SC. Most remarkable among the many benefits of the translation was revelation of heretofore unavailable text descriptions for 49 dimensions. Of these, 43 explain the titles and abbreviations with summary statistical data on ear measurements for young adults that were published in 1989 in the English language. Especially valuable among these data were four new and unique, long-axial ear lengths, all measured from a common ear landmark. These could locate “station planes” for cross-section views of human ears, similar to those for 3-D coordinate systems in aircraft and spacecraft fuselage engineering. Examples explaining the concepts and values of such a new approach to ear anthropometry are herein introduced, described and illustrated, together with previously recommended improvements in ear anthropometry notation and illustration, a virtual Ear Primary View Plane, a section plane through the ear long axis, newly introduced “semi-width” measurements extending perpendicular to the aforementioned section plane, new concepts of “view depths,” which are measured perpendicularly from the Ear Primary View Plane toward ear surfaces and a previously described three-axis aircraft motion analogy for defining static ear orientation. These innovative approaches are advocated for adoption by future researchers, designers of related hardware, modelers and standards developers.


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


Author(s):  
Marlene Rosager Lund Pedersen ◽  
Marianne Staal Stougaard ◽  
Bjarne Ibsen

Parents are a determinant factor in a child’s development of motor skills. Studies show that programmes in which health visitors supervise parents may improve infants’ motor skills. This study examines which factors health visitors have found to enhance and hamper the implementation of a motor development programme among socially vulnerable parents of infants. The data consist of three group interviews with 4 health visitors in each (12 health visitors in total) and a subsequent member check with 27 health visitors. All were audio-recorded and transcribed verbatim, and a thematic analysis was conducted. The results show that according to the health visitors, the programme increases the ability and willingness of parents to engage in co-producing its implementation. In particular, the materials that they hand out to the parents enhance the implementation. On the other hand, they perceive the limited time provided for the implementation, together with the many pressing needs of the families, as hampering the implementation. Consequently, the study can inform future policies and programmes for frontline workers and socially vulnerable parents of infants.


Sign in / Sign up

Export Citation Format

Share Document