scholarly journals Subchondral bone microarchitecture analysis in the proximal tibia at 7-T MRI

2017 ◽  
Vol 59 (6) ◽  
pp. 716-722 ◽  
Author(s):  
Christoph A Agten ◽  
Stephen Honig ◽  
Punam K Saha ◽  
Ravinder Regatte ◽  
Gregory Chang

Background Bone remodels in response to mechanical loads and osteoporosis results from impaired ability of bone to remodel. Bone microarchitecture analysis provides information on bone quality beyond bone mineral density (BMD). Purpose To compare subchondral bone microarchitecture parameters in the medial and lateral tibia plateau in individuals with and without fragility fractures. Material and Methods Twelve female patients (mean age = 58 ± 15 years; six with and six without previous fragility fractures) were examined with dual-energy X-ray absorptiometry (DXA) and 7-T magnetic resonance imaging (MRI) of the proximal tibia. A transverse high-resolution three-dimensional fast low-angle shot sequence was acquired (0.234 × 0.234 × 1 mm). Digital topological analysis (DTA) was applied to the medial and lateral subchondral bone of the proximal tibia. The following DTA-based bone microarchitecture parameters were assessed: apparent bone volume; trabecular thickness; profile-edge-density (trabecular bone erosion parameter); profile-interior-density (intact trabecular rods parameter); plate-to-rod ratio; and erosion index. We compared femoral neck T-scores and bone microarchitecture parameters between patients with and without fragility fracture. Results There was no statistical significant difference in femoral neck T-scores between individuals with and without fracture (–2.4 ± 0.9 vs. −1.8 ± 0.7, P = 0.282). Apparent bone volume in the medial compartment was lower in patients with previous fragility fracture (0.295 ± 0.022 vs. 0.317 ± 0.009; P = 0.016). Profile-edge-density, a trabecular bone erosion parameter, was higher in patients with previous fragility fracture in the medial (0.008 ± 0.003 vs. 0.005 ± 0.001) and lateral compartment (0.008 ± 0.002 vs. 0.005 ± 0.001); both P = 0.025. Other DTA parameters did not differ between groups. Conclusion 7-T MRI and DTA permit detection of subtle changes in subchondral bone quality when differences in BMD are not evident.

2014 ◽  
Vol 23 (01) ◽  
pp. 39-44
Author(s):  
D. B. Lee ◽  
P. J. Mitchell

SummaryIndividuals who have suffered fractures caused by osteoporosis – also known as fragility fractures – are the most readily identifiable group at high risk of suffering future fractures. Globally, the majority of these individuals do not receive the secondary preventive care that they need. The Fracture Liaison Service model (FLS) has been developed to ensure that fragility fracture patients are reliably identified, investigated for future fracture and falls risk, and initiated on treatment in accordance with national clinical guidelines. FLS have been successfully established in Asia, Europe, Latin America, North America and Oceania, and their widespread implementation is endorsed by leading national and international osteoporosis organisations. Multi-sector coalitions have expedited inclusion of FLS into national policy and reimbursement mechanisms. The largest national coalition, the National Bone Health Alliance (NBHA) in the United States, provides an exemplar of achieving participation and consensus across sectors. Initiatives developed by NBHA could serve to inform activities of new and emerging coalitions in other countries.


2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


Rheumatology ◽  
2021 ◽  
Vol 60 (Supplement_1) ◽  
Author(s):  
Malika A Swar ◽  
Marwan Bukhari

Abstract Background/Aims  Osteoporosis (OP) is an extra-articular manifestation of rheumatoid arthritis (RA) that leads to increased fracture susceptibility due to a variety of reasons including immobility and cytokine driven bone loss. Bone loss in other populations has well documented risk factors. It is unknown whether bone loss in RA predominantly affects the femoral neck or the spine. This study aimed to identify independent predictors of low bone mineral density (BMD) in patients RA at the lumbar spine and the femoral neck. Methods  This was a retrospective observational cohort study using patients with Rheumatoid arthritis attending for a regional dual X-ray absorptiometry (DEXA) scan at the Royal Lancaster Infirmary between 2004 and 2014. BMD in L1-L4 in the spine and in the femoral neck were recorded. The risk factors investigated were steroid use, family history of osteoporosis, smoking, alcohol abuse, BMI, gender, previous fragility fracture, number of FRAX(tm) risk factors and age. Univariate and Multivariate regression analysis models were fitted to explore bone loss at these sites using BMD in g/cm2 as a dependant variable. . Results  1,527 patients were included in the analysis, 1,207 (79%) were female. Mean age was 64.34 years (SD11.6). mean BMI was 27.32kg/cm2 (SD 5.570) 858 (56.2%) had some steroid exposure . 169(11.1%) had family history of osteoporosis. fragility fracture history found in 406 (26.6%). 621 (40.7%) were current or ex smokers . There was a median of 3 OP risk factors (IQR 1,3) The performance of the models is shown in table one below. Different risk factors appeared to influence the BMD at different sites and the cumulative risk factors influenced BMD in the spine. None of the traditional risk factors predicted poor bone loss well in this cohort. P129 Table 1:result of the regression modelsCharacteristicB femoral neck95% CIpB spine95%CIpAge at scan-0.004-0.005,-0.003&lt;0.01-0.0005-0.002,0.00050.292Sex-0.094-0.113,-0.075&lt;0.01-0.101-0.129,-0.072&lt;0.01BMI (mg/m2)0.0080.008,0.0101&lt;0.010.01130.019,0.013&lt;0.01Fragility fracture-0.024-0.055,0.0060.12-0.0138-0.060,0.0320.559Smoking0.007-0.022,0.0350.650.0286-0.015,0.0720.20Alcohol0.011-0.033,0.0 5560.620.0544-0.013,0.1120.11Family history of OP0.012-0.021,0.0450.470.0158-0.034,0.0650.53Number of risk factors-0.015-0.039,0.0080.21-0.039-0.075,-0.0030.03steroids0.004-0.023,0.0320.030.027-0.015,0.0690.21 Conclusion  This study has shown that predictors of low BMD in the spine and hip are different and less influential than expected in this cohort with RA . As the FRAX(tm) tool only uses the femoral neck, this might underestimate the fracture risk in this population. Further work looking at individual areas is ongoing. Disclosure  M.A. Swar: None. M. Bukhari: None.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 294.2-294
Author(s):  
D. Ciardo ◽  
P. Pisani ◽  
F. A. Lombardi ◽  
R. Franchini ◽  
F. Conversano ◽  
...  

Background:The main consequence of osteoporosis is the occurrence of fractures due to bone fragility, with important sequelae in terms of disability and mortality. It has been already demonstrated that the information about bone mass density (BMD) alone is not sufficient to predict the risk of fragility fractures, since several fractures occur in patients with normal BMD [1].The Fragility Score is a parameter that allows to estimate skeletal fragility thanks to a trans-abdominal ultrasound scan performed with Radiofrequency Echographic Multi Spectrometry (REMS) technology. It is calculated by comparing the results of the spectral analysis of the patient’s raw ultrasound signals with reference models representative of fragile and non-fragile bones [2]. It is a dimensionless parameter, which can vary from 0 to 100, in proportion to the degree of fragility, independently from BMD.Objectives:This study aims to evaluate the effectiveness of Fragility Score, measured during a bone densitometry exam performed with REMS technology at lumbar spine, in identifying patients at risk of incident osteoporotic fractures at a follow-up period of 5 years.Methods:Caucasian women with age between 30 and 90 were scanned with spinal REMS and DXA. The incidence of osteoporotic fractures was assessed during a follow-up period of 5 years. The ability of the Fragility Score to discriminate between patients with and without incident fragility fractures was subsequently evaluated and compared with the discriminatory ability of the T-score calculated with DXA and with REMS.Results:Overall, 533 women (median age: 60 years; interquartile range [IQR]: 54-66 years) completed the follow-up (median 42 months; IQR: 35-56 months), during which 73 patients had sustained an incident fracture.Both median REMS and DXA measured T-score values were significantly lower in fractured patients than for non-fractured ones, conversely, REMS Fragility Score was significantly higher (Table 1).Table 1.Analysis of T-score values calculated with REMS and DXA and Fragility Score calculated with REMS. Median values and interquartile ranges (IQR) are reported. The p-value is derived from the Mann-Whitney test.Patients without incident fragility fracturePatients with incident fragility fracturep-valueT-score DXA[median (IQR)]-1.9 (-2.7 to -1.0)-2.6 (-3.3 to -1.7)0.0001T-score REMS[median (IQR)]-2.0 (-2.8 to -1.1)-2.7 (-3.5 to -1.9)<0.0001Fragility Score[median (IQR)]29.9 (25.7 to 36.2)53.0 (34.2 to 62.5)<0.0001By evaluating the capability to discriminate patients with/without fragility fractures, the Fragility Score obtained a value of the ROC area under the curve (AUC) of 0.80, higher than the AUC of the REMS T-score (0.66) and of the T-score DXA (0.64), and the difference was statistically significant (Figure 1).Figure 1.ROC curve comparison of Fragility Score, REMS and DXA T-score values in the classification of patients with incident fragility fractures.Furthermore, the correlation between the Fragility Score and the T-score values was low, with Pearson correlation coefficient r=-0.19 between Fragility Score and DXA T-score and -0.18 between the Fragility Score and the REMS T-score.Conclusion:The Fragility Score was found to be an effective tool for the prediction of fracture risk in a population of Caucasian women, with performances superior to those of the T-score values. Therefore, this tool presents a high potential as an effective diagnostic tool for the early identification and subsequent early treatment of bone fragility.References:[1]Diez Perez A et al. Aging Clin Exp Res 2019; 31(10):1375-1389.[2]Pisani P et al. Measurement 2017; 101:243–249.Disclosure of Interests:None declared


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jihan Kim ◽  
Sami Lee ◽  
Sung Soo Kim ◽  
Jong-Pyo Lee ◽  
Jong Sung Kim ◽  
...  

Abstract Background The present study examined the relationship between body mass index (BMI) and the risk for fragility fractures in postmenopausal Korean women. Methods Among subjects who participated in the 4th Korea National Health and Nutrition Examination Survey (2008–2009), 2114 women ≥ 40 years of age were included. BMI was based on standards set by the Korean Society for the Study of Obesity, as follows: < 18.5 kg/m2, underweight; 18.5 ≤ to < 25 kg/m2, normal weight; and ≥ 25 kg/m2, obese. Subjects were also divided into three groups according to the location of fragility fracture: spine, hip, or wrist. Results The mean (± SD) rate of fragility fracture was significantly different among the three groups: 5.9 ± 2.9% (underweight), 1.1 ± 0.3% (normal weight), and 3.0 ± 0.7% (obese) (p = 0.001). After correcting for age, family history, and treatment history of osteoporosis and rheumatoid arthritis, smoking and drinking status, and level of exercise, multivariable regression analysis revealed that the odds ratio for fragility fracture in the underweight group was 5.48 [95% confidence interval (CI) 1.80–16.73] and 3.33 (95% CI 1.61–6.87) in the obese group. After subdividing fragility fractures into vertebral and non-vertebral, the odds ratio for vertebral fracture in the underweight group was 5.49 (95% CI 1.31–23.09) times higher than that in the normal weight group; in the obese group, the non-vertebral fracture odds ratio was 3.87 (95% CI 1.45–10.33) times higher. Analysis of non-vertebral fractures in the obese group revealed an odds ratio for fracture 22.05 (95% CI 1.33–365.31) times higher for hip fracture and 3.85 (95% CI 1.35–10.93) times higher for wrist fracture. Conclusions Obesity and underweight increased the risk for fragility fractures in postmenopausal Korean women.


Endocrine ◽  
2021 ◽  
Author(s):  
Enisa Shevroja ◽  
Francesco Pio Cafarelli ◽  
Giuseppe Guglielmi ◽  
Didier Hans

AbstractOsteoporosis, a disease characterized by low bone mass and alterations of bone microarchitecture, leading to an increased risk for fragility fractures and, eventually, to fracture; is associated with an excess of mortality, a decrease in quality of life, and co-morbidities. Bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA), has been the gold standard for the diagnosis of osteoporosis. Trabecular bone score (TBS), a textural analysis of the lumbar spine DXA images, is an index of bone microarchitecture. TBS has been robustly shown to predict fractures independently of BMD. In this review, while reporting also results on BMD, we mainly focus on the TBS role in the assessment of bone health in endocrine disorders known to be reflected in bone.


2021 ◽  
Vol 50 (Supplement_1) ◽  
pp. i12-i42
Author(s):  
C M Orton ◽  
N E Sinson ◽  
R Blythe ◽  
J Hogan ◽  
N A Vethanayagam ◽  
...  

Abstract Introduction NICE and the National Osteoporosis Guidance Group (NOGG) advise on evaluation of fracture risk and osteoporosis treatment1,2, with evidence suggesting that screening and treatment reduces the risk of fragility fractures 3,4,5. However, it is often overlooked in the management of older patients within secondary care. Audit data from Sheffield Frailty Unit (SFU) in 2018 showed that national guidance was not routinely followed. Fracture Risk Assessment Tool (FRAX®) scores were not calculated and bone health was poorly managed. Therefore, we undertook a quality improvement project aiming to optimise bone health in patients presenting to SFU. Method & Intervention In January 2019 we collaborated with Sheffield Metabolic Bone Centre (MBC) to develop a pathway aiming to improve bone health assessment and management in patients presenting to SFU with a fall or fragility fracture. This included a user-friendly flow chart with accompanying guidelines, alongside education for staff. Performance was re-evaluated in May 2019, following which a tick box prompt was added to post take ward round documentation. A re-audit was performed in March 2020. Results In March 2018 0% of patients presenting with a fall had a FRAX® score calculated and only 40% of those with a new fragility fracture were managed according to guidelines. In May 2019, this had improved to 18% and 100% respectively. In March 2020 86% of patients had a FRAX® score calculated appropriately and 100% of fragility fractures were managed according to guidelines. In both re-audits 100% of FRAX® scores were acted on appropriately. Conclusions There has been a significant increase in the number of patients who have their bone health appropriately assessed and managed after presenting to SFU. However, achieving optimum care is under constant review with the aim to deliver more treatment on SFU, thereby reducing the need for repeat visits to the MBC.


2015 ◽  
Vol 28 (05) ◽  
pp. 295-300 ◽  
Author(s):  
M. D. O’Donnell ◽  
G. Bobe ◽  
R. P. Scholz ◽  
J. E. Wiest ◽  
S. Nemanic ◽  
...  

Summary Objectives: To compare the results of femoral head and neck excision (FHNE) ostectomy performed by two novice veterinarians using an osteotome and mallet or microsagittal saw. Methods: In this ex vivo cadaveric study, hindlimbs of eight canine cadavers were randomized to FHNE with osteotome or micro sagittal saw as performed by two recently graduated veterinarians. The hindimbs were imaged by computed tomography (CT) before and after the osteotomy. Post FHNE CT images were evaluated by a board certified radiologist blinded to the ostectomy technique for assessment of the number of bone fragments, fissures, smoothness of osteotomy margination, and volume of residual fe-moral neck. Results: Femoral head and neck excision performed with the osteotome produced more peri-ostectomy bone fragments, cortical fissures, irregular margins, and residual femoral neck volume, compared with osteotomy using a saw. Clinical relevance: Compared to FHNE performed with a sagittal saw, osteotome FHNE resulted in a greater bone trauma and residual neck bone volume, which would require post-ostectomy modification in a clinical setting.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Rosmaliza Ramli ◽  
Mohd Fadhli Khamis ◽  
Ahmad Nazrun Shuid

Recent studies suggested thatEurycoma longifolia, a herbal plant, may have the potential to treat osteoporosis in elderly male. This study aimed to determine the effects ofEurycoma longifoliasupplementation on the trabecular bone microarchitecture of orchidectomised rats (androgen-deficient osteoporosis model). Forty-eight-aged (10–12 months old)Sprague Dawleyrats were divided into six groups of sham-operated (SHAM), orchidectomised control (ORX), orchidectomised + 7 mg/rat testosterone enanthate (TEN) and orchidectomised +Eurycoma longifolia30 mg/kg (EL30), orchidectomised +Eurycoma longifolia60 mg/kg (EL60), orchidectomised +Eurycoma longifolia90 mg/kg (EL90). Rats were euthanized following six weeks of treatment. The left femora were used to measure the trabecular bone microarchitecture using micro-CT. Orchidectomy significantly decreased connectivity density, trabecular bone volume, and trabecular number compared to the SHAM group. Testosterone replacement reversed all the orchidectomy-induced changes in the micro-CT parameters. EL at 30 and 60 mg/kg rat worsened the trabecular bone connectivity density and trabecular separation parameters of orchidectomised rats. EL at 90 mg/kg rat preserved the bone volume. High dose of EL (90 mg/kg) may have potential in preserving the bone microarchitecture of orchidectomised rats, but lower doses may further worsen the osteoporotic changes.


Sign in / Sign up

Export Citation Format

Share Document