Diffusional kurtosis imaging of kidneys in patients with hyperuricemia: initial study

2019 ◽  
Vol 61 (6) ◽  
pp. 839-847
Author(s):  
Zhong-Yuan Cheng ◽  
You-Zhen Feng ◽  
Xiao-Ling Liu ◽  
Yao-Jiang Ye ◽  
Jun-Jiao Hu ◽  
...  

Background At present, there remains a lack of a reliable indicator for monitoring renal function in patients with hyperuricemia. Purpose This study aimed to evaluate the feasibility of diffusion kurtosis imaging in the assessment of renal function in patients with hyperuricemia. Material and Methods A total of 75 male participants, including 25 with asymptomatic hyperuricemia, 25 with gouty arthritis, and 25 age-matched male healthy controls, were enrolled in this study. Diffusion kurtosis imaging data were acquired to derive axial (Ka), radial (Kr), and mean kurtosis (MK), fractional anisotropy, axial (Da), radial (Dr), and mean diffusivity (MD) for comparisons among the three groups. They were also correlated with estimated glomerular filtration rate (eGFR). Results The MK values of the renal cortex and medulla and Kr value of the renal medulla in patients with asymptomatic hyperuricemia and gouty arthritis significantly increased compared with those in the controls ( P < 0.05). Patients with gouty arthritis showed significant higher cortical and medullary Ka values compared with the other two groups ( P < 0.05). The cortical Kr values of the asymptomatic hyperuricemia and gouty arthritis patients were significantly higher than that of the controls ( P < 0.05). The medullary fractional anisotropy value showed a significant difference between the control and gouty arthritis groups ( P < 0.05). No correlation was found between any diffusion kurtosis imaging parameters and eGFR value. Conclusion Diffusion kurtosis imaging is feasible in the assessment of the early changes of renal cortex and medulla in patients with hyperuricemia.

2021 ◽  
Author(s):  
Mi Zhou ◽  
Longlin Yin ◽  
Li Lai ◽  
Ju Zeng ◽  
Shaoyu Wang

Abstract Background: To perform an analysis of mean diffusivity(MD)、mean kurtosis(MK) demonstrating the diagnostic value of diffusion kurtosis imaging (DKI) and diffusion weighted imaging (DWI) with respect to rectal carcinoma. Methods: A total of thirty-nine rectal carcinoma cases and thirty-nine healthy subjects (Normal control group) were enrolled in our study. All the subjects underwent multi-parameter (DWI, DKI )magnetic resonance examination. The acquired images were individually analysed by two readers. The obtained images were input into the corresponding software, then an analysis of the subjects’ apparent diffusion coefficient(ADC), MD and MK values was performed. A receiver-operating charasterictic (ROC) analysis was used to assess the diagnostic efficiency of the MK, MD and ADC parameters. The Mann-Whitney U test was used to contrast the parameters in both groups. Spearman correlation analysis was used to analyse the correlation between ADC and MD, MK. The Kappa consistency test was used to evaluate the consistency between each reader’s evaluation. Results: Reflecting their diagnostic values with respect to rectal carcinoma, the AUC for MK, MD, and ADC were 0.911, 0.888, and 0.827 (all P <0.05), respectively. Using 0.59, 2.15×10 -3 mm 2 /s, 1.35×10 -3 mm 2 /s as thresholds, the sensitivities of MK, MD, ADC were 89.50%, 78.90%, and 76.30%, respectively; meanwhile their respective specificities were 84.20%, 73.70%, and 73.70%.The ADC was directly proportional to MD ( r =0.994, P <0.05) and inversely proportional to MK ( r =-0.460, P <0.05). Analysis of the imaging data revealed consistent results from both readers,Kappa=0.737. Conclusion: The ADC、MK and MD parameters were effective in diagnosing rectal carcinoma. Moreover, the MK and MD parameters were found to provide even more valid information regarding the microenvironment with a higher diagnostic performance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianxiong Fu ◽  
Jing Ye ◽  
Wenrong Zhu ◽  
Jingtao Wu ◽  
Wenxin Chen ◽  
...  

Abstract Background Benign and malignant renal tumors share similar some imaging findings. Methods Sixty-six patients with clear cell renal cell carcinoma (CCRCC), 13 patients with renal angiomyolipoma with minimal fat (RAMF) and 7 patients with renal oncocytoma (RO) were examined. For diffusion kurtosis imaging (DKI), respiratory triggered echo-planar imaging sequences were acquired in axial plane (3 b-values: 0, 500, 1000s/mm2). Mean Diffusivity (MD), fractional Anisotropy (FA), mean kurtosis (MK), kurtosis anisotropy (KA) and radial kurtosis (RK) were performed. Results For MD, a significant higher value was shown in CCRCC (3.08 ± 0.23) than the rest renal tumors (2.93 ± 0.30 for RO, 1.52 ± 0.24 for AML, P < 0.05). The MD values were higher for RO than for AML (2.93 ± 0.30 vs.1.52 ± 0.24, P < 0.05), while comparable MD values were found between CCRCC and RO (3.08 ± 0.23 vs. 2.93 ± 0.30, P > 0.05). For MK, KA and RK, a significant higher value was shown in AML (1.32 ± 0.16, 1.42 ± 0.23, 1.41 ± 0.29) than CCRCC (0.43 ± 0.08, 0.57 ± 0.16, 0.37 ± 0.11) and RO (0.81 ± 0.08, 0.86 ± 0.16, 0.69 ± 0.08) (P < 0.05). The MK, KA and RK values were higher for RO than for CCRCC (0.81 ± 0.08 vs. 0.43 ± 0.08, 0.86 ± 0.16 vs. 0.57 ± 0.16, 0.69 ± 0.08 vs. 0.37 ± 0.11, P < 0.05). Using MD values of 2.86 as the threshold value for differentiating CCRCC from RO and AML, the best result obtained had a sensitivity of 76.1%, specificity of 72.6%. Using MK, KA and RK values of 1.19,1.13 and 1.11 as the threshold value for differentiating AML from CCRCC and RO, the best result obtained had a sensitivity of 91.2, 86.7, 82.1%, and specificity of 86.7, 83.2, 72.8%. Conclusion DKI can be used as another noninvasive biomarker for benign and malignant renal tumors’ differential diagnosis.


2013 ◽  
Vol 3 ◽  
pp. 53 ◽  
Author(s):  
Natalie C. Chuck ◽  
Günther Steidle ◽  
Iris Blume ◽  
Michael A. Fischer ◽  
Daniel Nanz ◽  
...  

Objectives: The purpose of this study was to evaluate to which degree investment of acquisition time in more encoding directions leads to better image quality (IQ) and what influence the number of encoding directions and the choice of b-values have on renal diffusion tensor imaging (DTI) parameters. Material and Methods: Eight healthy volunteers (32.3 y ± 5.1 y) consented to an examination in a 1.5T whole-body MR scanner. Coronal DTI data sets of the kidneys were acquired with systematic variation of b-values (50, 150, 300, 500, and 700 s/mm2) and number of diffusion-encoding directions (6, 15, and 32) using a respiratory-triggered echo-planar sequence (TR/TE 1500 ms/67 ms, matrix size 128 × 128). Additionally, two data sets with more than two b-values were acquired (0, 150, and 300 s/mm2 and all six b-values). Parametrical maps were calculated on a pixel-by-pixel basis. Image quality was determined with a reader score. Results: Best IQ was visually assessed for images acquired with 15 and 32 encoding directions, whereas images acquired with six directions had significantly lower IQ ratings. Image quality, fractional anisotropy, and mean diffusivity only varied insignificantly for b-values between 300 and 500 s/mm2. In the renal medulla fractional anisotropy (FA) values between 0.43 and 0.46 and mean diffusivity (MD) values between 1.8-2.1 × 10-3 mm2/s were observed. In the renal cortex, the corresponding ranges were 0.24-0.25 (FA) and 2.2-2.8 × 10-3 mm2/s (MD). Including b-values below 300 s/mm2, notably higher MD values were observed, while FA remained constant. Susceptibility artifacts were more prominent in FA maps than in MD maps. Conclusion: In DTI of the kidneys at 1.5T, the best compromise between acquisition time and resulting image quality seems the application of 15 encoding directions with b-values between 300 and 500 s/mm2. Including lower b-values allows for assessment of fast diffusing spin components.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chenglei Liu ◽  
Yue Xing ◽  
Dongmin Wei ◽  
Qiong Jiao ◽  
Qingcheng Yang ◽  
...  

Background. The accurate prediction of prognosis is key to prompt therapy adjustment. The purpose of our study was to investigate the efficacy of diffusion kurtosis imaging (DKI) in predicting progression-free survival (PFS) and overall survival (OS) in osteosarcoma patients with preoperative chemotherapy. Methods. Thirty patients who underwent DKI before and after chemotherapy, followed by tumor resection, were retrospectively enrolled. The patients were grouped into good responders (GRs) and poor responders (PRs). The Kaplan-Meier and log-rank test were used for survival analysis. The association between the DKI parameters and OS and PFS was performed by univariate and multivariate Cox proportional hazards models. Results. Significantly worse OS and PFS were associated with a lower mean diffusivity (MD) after chemotherapy (HR, 5.8; 95% CI, 1.5-23.1; P=0.012 and HR, 3.5; 95% CI, 1.2-10.1: P=0.028, respectively) and a higher mean kurtosis (MK) after chemotherapy (HR, 0.3; 95% CI, 0.1-0.9; P=0.041 and HR, 0.3; 95% CI, 0.1-0.8; P=0.049, respectively). Likewise, shorter OS and PFS were also significantly associated with a change rate in MD (CR MD) of less than 13.53% (HR, 8.6; 95% CI, 1.8-41.8; P=0.007 and HR, 2.9; 95% CI, 1.0-8.2; P=0.045, respectively). Compared to GRs, PRs had an approximately 9- and 4-fold increased risk of death (HR, 9.4; 95% CI, 1.2-75; P=0.034) and progression (HR, 4.2; 95% CI, 1.2-15; P=0.026), respectively. Conclusions. DKI has a potential to be a prognostic tool in osteosarcoma. Low MK and high MD after chemotherapy or high CR MD indicates favorite outcome, while prospective studies with large sample sizes are warranted.


2017 ◽  
Vol 45 (4) ◽  
pp. 1347-1358 ◽  
Author(s):  
Chong Qi ◽  
Song Yang ◽  
Lanxi Meng ◽  
Huiyuan Chen ◽  
Zhenlan Li ◽  
...  

Purpose To evaluate the clinical utility of diffusion kurtosis tensor imaging in the characterization of cerebral glioma and investigate correlations between diffusion and kurtosis metrics with tumor cellularity. Materials and Methods A group of 163 patients (age: 40.5 ± 11.5 years) diagnosed with cerebral glioma underwent diffusion kurtosis tensor imaging with a 3 T scanner. Diffusion and kurtosis metrics were measured in the solid part of tumors, and their abilities to distinguish between tumor grades was evaluated. In addition, we analyzed correlations between the metrics and tumor cellularity. Results Mean kurtosis (MK) revealed a significant difference between each pair of tumor grades ( P < 0.05) and produced the best performance in a receiver operating characteristics analysis (area under the curve [AUC] = 0.89, sensitivity/specificity = 83.3/90). In contrast, mean diffusivity (MD) revealed a significant difference only for tumor grade II versus IV ( P < 0.05). No significant differences between grades were detected with fractional anisotropy (FA; P > 0.05). Thus, kurtosis metrics exhibited a positive and strong correlation with tumor cellularity, while MD exhibited a negative or weak correlation with tumor cellularity. Conclusion Diffusion kurtosis metrics, particularly MK, demonstrated superior performance in distinguishing cerebral glioma of different grades compared with conventional diffusion metrics, and were closely associated with tumor cellularity.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Chunxiang Zhang ◽  
Bohao Zhang ◽  
Jiayue Yan ◽  
Kaiyu Wang ◽  
...  

Abstract Objective Preterm infants are at high risk of adverse neurodevelopmental outcome. Our aim is to explore the value of diffusion kurtosis imaging (DKI) in diagnosing brain developmental disorders in premature infants.Materials and Methods A total of 52 subjects were included in this study, including 26 premature infants as the preterm group, and 26 full-term infants as the control group. Routine magnetic resonance imaging and DKI examination were performed. Mean kurtosis (MK), radial kurtosis (RK), fractional anisotropy (FA), mean diffusivity (MD) values were measured in the brain regions including posterior limbs of the internal capsule (PLIC); anterior limb of internal capsule (ALIC); parietal white matter (PWM); frontal white matter (FWM); thalamus (TH); caudate nucleus (CN); genu of the corpus callosum (GCC). The X2, t test, Spearman’s correlation analysis and receiver operating characteristic curve (ROC)were used for data analyses.Results In the premature infant group, the MK and RK values of PLIA, ALIC, and PWM were lower than those in the control group (P<0.05). The FA values of PWM, FWM and TH were also lower than those of the control group (P<0.05). The AUCs of MK in PLIC and ALIC, MD in PWM, and FA in FWM were 0.813, 0.802, 0.842 and 0.867 (P<0.05). In thalamus and caudate nucleus, the correlations between MK, RK values and PMA were higher than those between FA, MD values and PMA.Conclusions DKI can be used as an effective tool in detecting brain developmental disorders in premature infants.


2020 ◽  
Vol 61 (10) ◽  
pp. 1431-1440
Author(s):  
Yuwei Jiang ◽  
Chunmei Li ◽  
Ying Liu ◽  
Kaining Shi ◽  
Wei Zhang ◽  
...  

Background There is still little research about histogram analysis of diffusion kurtosis imaging (DKI) using in prostate cancer at present. Purpose To verify the utility of histogram analysis of DKI model in detection and assessment of aggressiveness of prostate cancer, compared with monoexponential model (MEM). Material and Methods Twenty-three patients were enrolled in this study. For DKI model and MEM, the Dapp, Kapp, and apparent diffusion coefficient (ADC) were obtained by using single-shot echo-planar imaging sequence. The pathologies were confirmed by in-bore magnetic resonance (MR)-guided biopsy. Regions of interest (ROI) were drawn manually in the position where biopsy needle was put. The mean values and histogram parameters in cancer and noncancerous foci were compared using independent-samples T test. Receiver operating characteristic curves were used to investigate the diagnostic efficiency. Spearman’s test was used to evaluate the correlation of parameters and Gleason scores. Results The mean, 10th, 25th, 50th, 75th, and 90th percentiles of ADC and Dapp were significantly lower in prostate cancer than non-cancerous foci ( P < 0.001). The mean, 50th, 75th, and 90th percentiles of Kapp were significantly higher in prostate cancer ( P < 0.05). There was no significant difference between the AUCs of two models (0.971 vs. 0.963, P > 0.05). With the increasing Gleason scores, the 10th ADC decreased ( ρ = −0.583, P = 0.018), but the 90th Kapp increased ( ρ = 0.642, P = 0.007). Conclusion Histogram analysis of DKI model is feasible for diagnosing and grading prostate cancer, but it has no significant advantage over MEM.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Xi-ran Chen ◽  
Jie-ying Zeng ◽  
Zhi-Wei Shen ◽  
Ling-mei Kong ◽  
Wen-bin Zheng

The aim of this study was to test the technical feasibility of diffusion kurtosis imaging (DKI) in the brain after acute alcohol intoxication. Diffusion tensor imaging (DTI) and DKI during 7.0 T MRI were performed in the frontal lobe and thalamus before and 30 min, 2 h, and 6 h after ethyl alcohol administration. Compared with controls, mean kurtosis values of the frontal lobe and thalamus first decreased by 44% and 38% within 30 min (p<0.01 all) and then increased by 14% and 46% at 2 h (frontal lobe, p>0.05; thalamus, p<0.01) and by 29% and 68% at 6 h (frontal lobe, p<0.05; thalamus, p<0.01) after acute intake. Mean diffusivity decreased significantly in both the frontal lobe and the thalamus at various stages. However, fractional anisotropy decreased only in the frontal lobe, with no detectable change in the thalamus. This demonstrates that DKI possesses sufficient sensitivity for tracking pathophysiological changes at various stages associated with acute alcohol intoxication and may provide additional information that may be missed by conventional DTI parameters.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiaji Mao ◽  
Weike Zeng ◽  
Qinyuan Zhang ◽  
Zehong Yang ◽  
Xu Yan ◽  
...  

Abstract Background To compare the diagnostic performance of neurite orientation dispersion and density imaging (NODDI), mean apparent propagator magnetic resonance imaging (MAP-MRI), diffusion kurtosis imaging (DKI), diffusion tensor imaging (DTI) and diffusion-weighted imaging (DWI) in distinguishing high-grade gliomas (HGGs) from solitary brain metastases (SBMs). Methods Patients with previously untreated, histopathologically confirmed HGGs (n = 20) or SBMs (n = 21) appearing as a solitary and contrast-enhancing lesion on structural MRI were prospectively recruited to undergo diffusion-weighted MRI. DWI data were obtained using a q-space Cartesian grid sampling procedure and were processed to generate parametric maps by fitting the NODDI, MAP-MRI, DKI, DTI and DWI models. The diffusion metrics of the contrast-enhancing tumor and peritumoral edema were measured. Differences in the diffusion metrics were compared between HGGs and SBMs, followed by receiver operating characteristic (ROC) analysis and the Hanley and McNeill test to determine their diagnostic performances. Results NODDI-based isotropic volume fraction (Viso) and orientation dispersion index (ODI); MAP-MRI-based mean-squared displacement (MSD) and q-space inverse variance (QIV); DKI-generated radial, mean diffusivity and fractional anisotropy (RDk, MDk and FAk); and DTI-generated radial, mean diffusivity and fractional anisotropy (RD, MD and FA) of the contrast-enhancing tumor were significantly different between HGGs and SBMs (p < 0.05). The best single discriminative parameters of each model were Viso, MSD, RDk and RD for NODDI, MAP-MRI, DKI and DTI, respectively. The AUC of Viso (0.871) was significantly higher than that of MSD (0.736), RDk (0.760) and RD (0.733) (p < 0.05). Conclusion NODDI outperforms MAP-MRI, DKI, DTI and DWI in differentiating between HGGs and SBMs. NODDI-based Viso has the highest performance.


2019 ◽  
Vol 14 (2) ◽  
pp. 627-638
Author(s):  
Qing Sun ◽  
Wenliang Fan ◽  
Yuan Liu ◽  
Yan Zou ◽  
Natalie Wiseman ◽  
...  

Abstract Cirrhosis is a major public health concern. However, little is known about the neurobiological mechanisms underlying brain microstructure alterations in cirrhotic patients. The purpose of this prospective study was to investigate brain microstructural alterations in cirrhosis with or without minimal hepatic encephalopathy (MHE) and their relationship with patients’ neurocognitive performance and disease duration using voxel-based analysis of diffusion kurtosis imaging (DKI). DKI data were acquired from 30 cirrhotic patients with MHE, 31 patients without MHE (NMHE) and 59 healthy controls. All DKI-derived parametric maps were compared across the three groups to investigate their group differences. Correlation analyses were further performed to assess relationships between altered imaging parameters and clinical data. Voxel-based analysis of DKI data results showed that MHE/NMHE patients had increased radial diffusivity, axial diffusivity (AD) and mean diffusivity in addition to decreased axial kurtosis (AK) and fractional anisotropy of kurtosis in several regions. Compared to controls, these regions were primarily the cingulum, temporal and frontal cortices. The DKI metrics (i.e., AK and AD) were correlated with clinical variables in the two patient groups. In conclusion, DKI is useful for detecting brain microstructural abnormalities in MHE and NMHE patients. Abnormal DKI parameters suggest alterations in brain microstructural complexity in cirrhotic patients, which may contribute to the neurobiological basis of neurocognitive impairment. These results may provide additional information on the pathophysiology of cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document