scholarly journals Comparative Evaluation of Antibacterial Effects of Nanoparticle-Incorporated Orthodontic Primer: An In Vitro Study

2021 ◽  
pp. 030157422098818
Author(s):  
Cheepurupalli Meher Vineesha ◽  
D Praveen Kumar Varma ◽  
P Arun Bhupathi ◽  
CV Padma Priya ◽  
M Anoosha ◽  
...  

Aim and Objectives: To compare and evaluate the antibacterial efficacy of various nanoparticles incorporated in orthodontic primer with that of conventional antimicrobial agents at different concentrations on Streptococcus mutans ( S. mutans) strain. Materials and Methods: Transbond XT Primer was mixed with 2.5% and 5% benzalkonium chloride (BAC), 0.2% and 2.5% chlorhexidine, 1% and 3% titanium dioxide (TiO2) nanoparticles, 0.2% and 0.5% nanohydroxyapatite, and 0.2% and 0.5% silica-doped nanohydroxyapatite powders. Antibacterial activity against S. mutans for all the materials was evaluated by the disk diffusion method for periods of 48 (T1) and 72 (T2) hours. Results: There was a significant increase in the antimicrobial activity of the orthodontic primer modified by the addition of antibacterial agents. The highest zone of inhibition against S. mutans was observed for silica-doped nanohydroxyapatite of 0.5% (11.03 mm) among all the nanoparticles, which was similar to the conventional antibacterial agents used in our study. Conclusions: • Among all the groups, BAC at 5% concentration showed the highest antimicrobial activity, and the least activity was exhibited by 1% TiO2 nanoparticles. • Silica-doped nanohydroxyapatite at 0.5% expressed the greatest antibacterial activity among all the nanoparticles. • All the materials showed sustained antibacterial activity even after 72 hours.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


Author(s):  
Semwal Amit Negi Sweta

Abstract-Medicinal plants represent an essential source of drugs and have played an important role in healthcaresystem.PyracanthacrenulataandZanthoxylum armatumhave been used as traditional medicine. The main aim of the study was to find the antibacterial activity of the selected plants against bacterialspecies:E.coliandPseudomonasaeruginosa. The solvents used for plant extraction were hexane, chloroform, ethanol and aqueous. The in vitro antimicrobial activity was performed by Agar disk diffusion method. The hexane and aqueous extracts showed moderate activity whereas theethanolicextractsshowedasignificantantibacterial activity. In the study Tetracycline was used as standard. The combined ethanolic extract of both the selected plant showed the synergistic effect on the bacterial strain tested. This leads to the conclusion that the combined effect can have possible application in the development of products as antimicrobial.


Chemotherapy ◽  
2017 ◽  
Vol 62 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Socorro Leyva-Ramos ◽  
Denisse de Loera ◽  
Jaime Cardoso-Ortiz

Background: Fluoroquinolones are widely prescribed synthetic antimicrobial agents. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome; the irreversible DNA damage eventually causes the killing of bacteria. Thorough knowledge of the structure-activity relationship of quinolones is essential for the development of new drugs with improved activity against resistant strains. Methods: The compounds were screened for their antibacterial activity against 4 representing strains using the Kirby-Bauer disk diffusion method. Minimal inhibitory concentration (MIC) was determined by measuring the diameter of the inhibition zone using concentrations between 250 and 0.004 μg/mL. Results: MIC of derivatives 2, 3, and 4 showed potent antimicrobial activity against gram-positive and gram-negative bacteria. The effective concentrations were 0.860 μg/mL or lower. MIC for compounds 5-11 were between 120 and 515 μg/mL against Escherichia coli and Staphylococcus aureus, and substituted hydrazinoquinolones 7-10 showed poor antibacterial activity against gram-positive and gram-negative bacteria compared with other quinolones. Conclusion: Compounds obtained by modifications on C-7 of norfloxacin with the acetylated piperazinyl, halogen atoms, and substituted hydrazinyl showed good in vitro activity - some even better than the original compound.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2723
Author(s):  
Łukasz Popiołek ◽  
Sylwia Szeremeta ◽  
Anna Biernasiuk ◽  
Monika Wujec

This research describes the synthesis and in vitro antimicrobial activity study of a series of 2,4,6-trimethylbenzenesulfonyl hydrazones. Twenty-five hydrazones (2–26) were synthesized on the basis of condensation reaction. The in vitro bioactivity study confirmed the potential application of obtained derivatives as antimicrobial agents. Among the tested compounds, the highest activity was discovered for derivative 24, which possessed minimal inhibitory concentration (MIC) ranging from 7.81 to 15.62 µg/mL against Gram-positive reference bacterial strains. Synthesized benzenesulfonyl hydrazones can be applied as potential ligands for the synthesis of bioactive metal complexes.


Author(s):  
V. V. Pantyo ◽  
M. M. Fizer ◽  
O. I. Fizer ◽  
G. M. Koval ◽  
E.M. Danko

Annotation. The development and rapid pace of the spread of resistance to antimicrobial agents predetermines the search for new methods of counteracting pathogenic and conditionally pathogenic microorganisms. In this context, studies of the antimicrobial activity of newly synthesized chemicals, which in the future can be considered as candidates for antiseptic and disinfectants, are relevant. The aim of the work was to determine the antimicrobial activity of new ionic associates based on the surface-active cetylpyridinium cation with respect to certain opportunistic microorganisms. The antimicrobial activity of four ionic associates based on the cetylpyridinium cation with respect to clinical isolates of E. coli, P. vulgaris, K. pneumonia, P. aeruginosa, S. aureus, as well as the collection test strains of S. aureus ATCC 25923, E. coli ATCC 29522 and P. aeruginosa ATCC 27853 was studied. Screening studies were performed by the disk diffusion method. With substances that showed an antimicrobial effect, quantitative studies were carried out by the method of serial macro-dilutions in a liquid nutrient media. Screening studies revealed the antibacterial activity of the substances against E. coli ATCC 25923, E. coli (clinical isolate), P. vulgaris and K. pneumonia. With these microorganisms quantitative studies were carried out with the determination of the minimum inhibitory and minimum bactericidal concentrations. The most pronounced antimicrobial activity for the investigated microflora was shown by tetraphenylborate and cetylpyridinium perchlorate. The MIC and MBC values of these substances ranged between 1.625–3.125 mmol / L and 3.125–12.5 mmol / L, respectively. The studied associates showed high antimicrobial activity against representatives of the Enterobacteriaceae family in in vitro studies. Promising is the further study of the effect of the counter-anion associates of cationic surfactants on the biofilm formation of conditionally pathogenic microorganisms.


2019 ◽  
Vol 15 (7) ◽  
pp. 813-832 ◽  
Author(s):  
Sunil Harer ◽  
Manish Bhatia ◽  
Vikram Kawade

Background: Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis in micro-organisms. A large number of drugs have been designed to inhibit microbial DHFR but over the period of time, some drugs have developed resistance and cross reactivity towards the enzyme. Over the past few decades, benzimidazoles, triazoles and their derivatives have been grabbing the attention of the synthetic chemists for their wide gamut of antibacterial and antifungal activities targeting microbial protein DHFR. Objective: Our goal behind present investigation is to explore benzimidazoles class of drugs as microbial DHFR inhibitors by studying ligand-receptor binding interactions, in vitro enzyme inhibition assay and confirmation of anti-microbial activity against selected pathogenic microorganisms. Methods: A library containing thirty novel 2,6-disubstituted 1H-benzimidazoles was synthesized by one pot condensation of o-nitro aniline or 2,4-dinitro aniline with series of aldehydes or acetophenones using Na2S2O4 or SnCl2 respectively and reflux for 5-6hr. Structures of compounds have been confirmed by spectroscopic methods as 1H and 13C NMR, FT-IR and MS. In vitro DHFR inhibition study was performed by using Epoch microplate reader and IC50 of the test compounds was compared with Trimethoprim. In vitro antimicrobial activity was performed against selected clinical pathogens by agar disk diffusion method and MIC (µg/mL) was reported. Results: Moderate to good level of DHFR inhibition was observed with IC50 values in the range of 7-23 µM. Compounds B1, B19, B22, B24 and B30 expressed 1.1 to 1.4 folds more prominent DHFR inhibitory activity as compared to standard Trimethoprim. Remarkable antimicrobial activity was exhibited by B1, B19, B22, B24 and B30. Molecular docking study revealed perfect binding of test ligands with key amino acids of DHFR as Phe31, Ile94, Ile5, Asp27, Gln32 and Phe36. Conclusion: Nature of 1H-benzimidazole substituents at position 2 and 6 had influence over magnitude and type of molecular binding and variation in the biological activity. The present series of 1H-benzimidazoles could be considered promising broad-spectrum antimicrobial candidates that deserve in future for preclinical antimicrobial evaluation and development of newer antimicrobial agents targeting microbial DHFR.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Sadra Ansaripour ◽  
Niloofar Safaei ◽  
Najme Bagheri

Background: Acinetobacter baumannii is considered a dangerous and drug-resistant hospital-acquired infection. Nowadays, there has been an increasing interest in the use of herbal drugs. Objectives: This in vitro study was conducted to determine the antimicrobial effects of Rumex acetosella L. and Cucurbita maxima L. on Acinetobacter baumannii in comparison with popular antibiotics. Methods: In this experimental study, after extraction, the antibacterial effects of extracts were determined based on MIC and MBC using broth microdilution. The effects of different concentrations of the extracts on A. baumannii growth were also investigated by the disk diffusion method. The results were compared with choice antibiotics. Results: The results of the study indicated that in broth microdilution, the MIC and MBC of the hydroalcoholic extract of C. maxima and the aqueous extract of R. acetosella were equal (64 and 128 µg/mL, respectively). The MIC and MBC of the hydroalcoholic extract of R. acetosella and the aqueous extract of C. maxima were 128 and 256 µg/mL, respectively, which indicated the weaker effects of these extracts. In the disk diffusion method, the greatest mean diameter of inhibition zone was obtained for R. acetosella extracts (24.83 ± 0.29 and 21.83 ± 0.29 mm for hydroalcoholic and aqueous extracts, respectively). Also, the lowest mean diameter was obtained for C. maxima extracts (10.33 ± 0.58 and 8 mm for hydroalcoholic and aqueous extracts, respectively). Conclusions: This study showed the potent antibacterial effects of R. acetosella and C. maxima. They were even more potent than commonly used antibiotics. Therefore, the plants can be used as antimicrobial agents, as well as pharmaceutical supplements and alternative therapies.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Baviskar ◽  
S. S. Khadabadi ◽  
S. L. Deore

A new series ofN-{4-methyl-5-[4-(4-oxo-2-phenyl(1,3-thiazolidin-3-yl)]-5-sulfanyl(1,2,4-triazol-3-yl)-1,3-thiazol-2-yl }acetamide (7a-l) was synthesized in order to determine their antimicrobial activity and feasible structure–activity relationships. The compounds were synthesized in good yield and the structures of all newly synthesized compounds were established on the basis of their IR,1HNMR, and elemental analysis. The synthesized compounds were testedin vitroantibacterial activity againstStaphylococcus aureus,Escherichia coli,Pseudomonas aeruginosaandSalmonella typhiand antifungal activity againstAspergillus niger,Candida albicansby measuring the zone of inhibition in mm.


2021 ◽  
Vol 4 ◽  
pp. 73-77
Author(s):  
Pooja Latti ◽  
R. Subramaniam ◽  
G. M. Prashant

Objectives: To evaluate the antibacterial activity of black pepper, Indian bay leaf, cinnamon, and cumin against Streptococcus mutans and Lactobacillus acidophilus in-vitro and to determine their minimum inhibitory concentration (MIC). Materials and Methods: The spices (cinnamon, cumin, Indian bay leaf, and black pepper) were obtained from local market, were dried and powdered. Solvent extracts were prepared with methanol by maceration, followed by filtration and evaporation. The antimicrobial activity was assessed using cup plate diffusion method, followed by determination of MIC of the extracts. Statistical analysis was performed using one-way analysis of variance and Tukey’s post hoc test was used for pairwise comparison. P < 0.05 was considered statistically significant. Results: All the four extracts showed significant antimicrobial activity. Cinnamon demonstrated maximum activity against S. mutans (zone of inhibition of 18.1 mm ± 0.30) and L. acidophilus (zone of inhibition of 17.9 mm ± 0.44) with the least MIC against the organisms (<0.05 mg/ml). Conclusion: All the spice extracts tested demonstrated significant antibacterial activity against S. mutans and L. acidophilus. On comparison of the antibacterial activities of all the four extracts, cinnamon extract emerged as the potent agent.


Sign in / Sign up

Export Citation Format

Share Document