scholarly journals Antibacterial Effects of Hydroalcoholic and Aqueous Extracts of Two Medicinal Plants in Comparison with Popular Antibiotics: An In Vitro Study

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Sadra Ansaripour ◽  
Niloofar Safaei ◽  
Najme Bagheri

Background: Acinetobacter baumannii is considered a dangerous and drug-resistant hospital-acquired infection. Nowadays, there has been an increasing interest in the use of herbal drugs. Objectives: This in vitro study was conducted to determine the antimicrobial effects of Rumex acetosella L. and Cucurbita maxima L. on Acinetobacter baumannii in comparison with popular antibiotics. Methods: In this experimental study, after extraction, the antibacterial effects of extracts were determined based on MIC and MBC using broth microdilution. The effects of different concentrations of the extracts on A. baumannii growth were also investigated by the disk diffusion method. The results were compared with choice antibiotics. Results: The results of the study indicated that in broth microdilution, the MIC and MBC of the hydroalcoholic extract of C. maxima and the aqueous extract of R. acetosella were equal (64 and 128 µg/mL, respectively). The MIC and MBC of the hydroalcoholic extract of R. acetosella and the aqueous extract of C. maxima were 128 and 256 µg/mL, respectively, which indicated the weaker effects of these extracts. In the disk diffusion method, the greatest mean diameter of inhibition zone was obtained for R. acetosella extracts (24.83 ± 0.29 and 21.83 ± 0.29 mm for hydroalcoholic and aqueous extracts, respectively). Also, the lowest mean diameter was obtained for C. maxima extracts (10.33 ± 0.58 and 8 mm for hydroalcoholic and aqueous extracts, respectively). Conclusions: This study showed the potent antibacterial effects of R. acetosella and C. maxima. They were even more potent than commonly used antibiotics. Therefore, the plants can be used as antimicrobial agents, as well as pharmaceutical supplements and alternative therapies.

2021 ◽  
pp. 030157422098818
Author(s):  
Cheepurupalli Meher Vineesha ◽  
D Praveen Kumar Varma ◽  
P Arun Bhupathi ◽  
CV Padma Priya ◽  
M Anoosha ◽  
...  

Aim and Objectives: To compare and evaluate the antibacterial efficacy of various nanoparticles incorporated in orthodontic primer with that of conventional antimicrobial agents at different concentrations on Streptococcus mutans ( S. mutans) strain. Materials and Methods: Transbond XT Primer was mixed with 2.5% and 5% benzalkonium chloride (BAC), 0.2% and 2.5% chlorhexidine, 1% and 3% titanium dioxide (TiO2) nanoparticles, 0.2% and 0.5% nanohydroxyapatite, and 0.2% and 0.5% silica-doped nanohydroxyapatite powders. Antibacterial activity against S. mutans for all the materials was evaluated by the disk diffusion method for periods of 48 (T1) and 72 (T2) hours. Results: There was a significant increase in the antimicrobial activity of the orthodontic primer modified by the addition of antibacterial agents. The highest zone of inhibition against S. mutans was observed for silica-doped nanohydroxyapatite of 0.5% (11.03 mm) among all the nanoparticles, which was similar to the conventional antibacterial agents used in our study. Conclusions: • Among all the groups, BAC at 5% concentration showed the highest antimicrobial activity, and the least activity was exhibited by 1% TiO2 nanoparticles. • Silica-doped nanohydroxyapatite at 0.5% expressed the greatest antibacterial activity among all the nanoparticles. • All the materials showed sustained antibacterial activity even after 72 hours.


Diseases ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 17 ◽  
Author(s):  
Payam Behzadi ◽  
Edit Urbán ◽  
Márió Gajdács

Urinary tract infections (UTIs) are among the most common infections requiring medical attention worldwide. The production of biofilms is an important step in UTIs, not only from a mechanistic point of view, but this may also confer additional resistance, distinct from other aspects of multidrug resistance (MDR). A total of two hundred and fifty (n = 250) Escherichia coli isolates, originating from clean-catch urine samples, were included in this study. The isolates were classified into five groups: wild-type, ciprofloxacin-resistant, fosfomycin-resistant, trimethoprim-sulfamethoxazole-resistant and extended spectrum β-lactamase (ESBL)-producing strains. The bacterial specimens were cultured using eosine methylene blue agar and the colony morphology of isolates were recorded. Antimicrobial susceptibility testing was performed using the Kirby–Bauer disk diffusion method and E-tests. Biofilm-formation of the isolates was carried out with the crystal violet tube-adherence method. n = 76 isolates (30.4%) produced large colonies (>3 mm), mucoid variant colonies were produced in n = 135 cases (54.0%), and n = 119 (47.6%) were positive for biofilm formation. The agreement (i.e., predictive value) of mucoid variant colonies in regard to biofilm production in the tube-adherence assay was 0.881 overall. Significant variation was seen in the case of the group of ESBL-producers in the ratio of biofilm-producing isolates. The relationship between biofilm-production and other resistance determinants has been extensively studied. However, no definite conclusion can be reached from the currently available data.


Author(s):  
Semwal Amit Negi Sweta

Abstract-Medicinal plants represent an essential source of drugs and have played an important role in healthcaresystem.PyracanthacrenulataandZanthoxylum armatumhave been used as traditional medicine. The main aim of the study was to find the antibacterial activity of the selected plants against bacterialspecies:E.coliandPseudomonasaeruginosa. The solvents used for plant extraction were hexane, chloroform, ethanol and aqueous. The in vitro antimicrobial activity was performed by Agar disk diffusion method. The hexane and aqueous extracts showed moderate activity whereas theethanolicextractsshowedasignificantantibacterial activity. In the study Tetracycline was used as standard. The combined ethanolic extract of both the selected plant showed the synergistic effect on the bacterial strain tested. This leads to the conclusion that the combined effect can have possible application in the development of products as antimicrobial.


2015 ◽  
Vol 09 (04) ◽  
pp. 580-586 ◽  
Author(s):  
Priscila de Camargo Smolarek ◽  
Luis Antonio Esmerino ◽  
Ana Cláudia Chibinski ◽  
Marcelo Carlos Bortoluzzi ◽  
Elizabete Brasil dos Santos ◽  
...  

ABSTRACT Objectives: This in vitro study evaluated the antimicrobial effects of commercial toothpastes containing natural compounds. Materials and Methods: The study groups were divided based on the natural compound present in the toothpaste composition: Sorbitol (I), tocopherol (II), mint (III), cinnamon/mint (IV), propolis/melaleuca (V), mint/açai (VI), mint/guarana (VII), propolis (VIII), negative control (IX), and the positive control (X). The antimicrobial properties of the toothpastes were tested using the disk diffusion method against oral pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Enterococcus faecalis. The resulting inhibition halos were measured in millimeters. Results: The data indicated that the bacteria responded differently to the toothpastes (P < 0.0001). The diameters of the inhibition halos against S. mutans were in decreasing order of efficacy: Propolis/melaleuca > mint/guarana > mint/açai > sorbitol > tocopherol > cinnamon/mint > propolis > mint (P < 0.001 vs. negative control). E. faecalis showed variable responses to the dentifrices in the following order of decreasing efficacy: Mint/guarana > propolis > sorbitol > mint/açai > tocopherol > cinnamon/mint > mint = propolis/melaleuca = negative control. The product with the highest antimicrobial activity was mint/guarana, which was significantly different than propolis/melaleuca, mint, cinnamon/mint, and tocopherol and negative control (P < 0.001). The statistical analysis indicated that propolis, sorbitol, and mint/açai did not show any differences compared to mint/guarana (P > 0.05) and positive control (P > 0.05). P. aeruginosa was resistant to all dental gels tested including positive control. Conclusion: The toothpastes with natural compounds have therapeutic potential and need more detailed searches for the correct clinic therapeutic application. The results from this study revealed differences in the antimicrobial activities of commercial toothpastes with natural compounds.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Rosa Raybaudi-Massilia ◽  
Alírica I. Suárez ◽  
Francisco Arvelo ◽  
Alexandra Zambrano ◽  
Felipe Sojo ◽  
...  

Alcoholic and aqueous extracts were obtained from red sweet pepper (Capsicum annuum L.) by different methodologies to evaluate their cytotoxic, antioxidant and antimicrobial properties. Alcoholic extracts (MFP, MSd, SFP, SDP, SSd) from fresh red sweet pepper (FP) and dry pulp (DP) and seed (Sd) were obtained by maceration (M) and Soxhlet (S) equipment using methanol as extraction solvent; whereas aqueous extracts (LFP, LSd) were obtained by decoction followed by lyophilization (L). Human tumoral cell lines from breast (MCF-7 and SKBr3), prostate (PC3) and cervix (HeLa), and fibroblasts (as control) were used to determine the cytotoxic properties by the MTT assay. Antioxidant and antimicrobial properties were determined by DPPH and disc diffusion method, respectively. The extracts SDP and SFP showed the higher cytotoxic activity. The SDP extract had a significant (P < 0.05) in-vitro effect on HeLa (1.9 ± 1.4 µg/mL) and PC3 (< 1 µg/mL) cells with a moderated impact on fibroblasts (26.1 ± 1.2 µg/mL); whereas, SFP had a significant (p < 0.05) effect on MCF-7 cell line (2.1 ± 1.2 µg/mL) with a moderated impact on fibroblasts (25.9 ± 1.0 µg/mL). The higher antioxidant activity was found for MFP (80.3 ± 0.2%) and SFP extracts (75.5 ± 0.5%). Mild antimicrobial activity was only observed for alcoholic extracts. The results showed the potential of red sweet pepper (C. annuum L.) as a source of antioxidant and cytotoxic compounds, and suggest the need of further studies to isolate and characterize the bioactive compounds that impart those properties.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Banafsheh Soleimani ◽  
Hamidreza Goli ◽  
Mahsa Naranjian ◽  
Seyed Jaber Mousavi ◽  
Azam Nahvi

Background: Topical fluoride products such as varnishes prevent dental caries by limiting demineralization and antibacterial properties. The structural and metabolic characteristics of cariogenic microorganisms are different from each other. Also, the formulation properties, concentration, and release behavior of fluoride vary in different varnishes. Objectives: In this study, we investigated the antibacterial effects of three types of common fluoride varnishes against two cariogenic bacteria of Streptococcus mutans (S.M.) and Lactobacillus acidophilus (L.A.). Methods: In this in vitro study, antibacterial effects of MI varnish [containing calcium phosphopeptide-amorphous calcium phosphate (CPP-ACP)], Polimo (containing xylitol), and FluoroDose varnishes were evaluated using disc diffusion method via measuring the diameter of the inhibition zone. The antibiotics of erythromycin and ampicillin were used as the positive control of the test. Analysis of variance (ANOVA) and post hoc tests were applied to compare the mean of non-growth zone diameter in the studied groups. Data were analyzed by SPSS 16. The statistical significance level was determined as P-value < 0.05. Results: The antibacterial effect of each varnish was optimal against both bacteria. In comparison, the mean diameter of the inhibition zone in MI varnish was significantly (P-value=0.019) higher than Polimo and FluoroDose brands on S.M.; however, this difference was not statistically significant for L.A. Furthermore, Polimo and FluoroDose varnishes showed similar antimicrobial effects against these bacteria. Conclusions: The use of these varnishes seems to be suitable for preventing tooth decay. MI varnish is preferable because of its higher antibacterial properties.


1996 ◽  
Vol 40 (4) ◽  
pp. 930-933 ◽  
Author(s):  
K Weiss ◽  
M Laverdière ◽  
R Rivest

Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity.


2013 ◽  
Vol 7 (2) ◽  
pp. 17-23
Author(s):  
Dalia Abd Al Kader Al-Salih ◽  
Fitua M. Aziz ◽  
Bahir Abdul Razzaq Mshimesh ◽  
Muhanad T. Jehad

Overuse of antibiotics has become the major factor for the emergence and dissemination of multi-drug resistant strains of several groups of microorganisms and this lead to search for agents that may have antibacterial effects. Vitamin E emerged as an essential, fat-soluble nutrient in the human body and it is essential, because the body cannot manufacture its own vitamin E, so foods and supplements must provide it. The aim of the present study was to evaluate the effect of vitamin E against pathogenic bacteria. Gram positive and gram negative bacteria were selected as the test microorganisms based on their importance in infections. In this study vitamin E used in four concentrations (50,100,200,400) IU/ml. The agar diffusion method was used to determine antibacterial activity. Results showed that gram negative bacteria were shown to be more resistant than gram positive bacteria. The resistance of gram negative bacteria towards antibacterial substances may be related to lipopolysaccharides in their outer membrane.


2021 ◽  
Vol 10 (3) ◽  
pp. e54910313658
Author(s):  
Bianca Maria Beserra Costa ◽  
Maria Katharina Peixoto da Silva ◽  
Sandra Maria Alves Sayão Maia ◽  
Paulo Maurício Reis de Melo Júnior ◽  
Natália Gomes de Oliveira ◽  
...  

The present work refers to an in vitro study of different commercial brands of sodium hypochlorite (manipulated, Soda Chlorine and Brilux) being evaluated by means of pH, antimicrobial action and concentration, at time intervals of 0, 7 and 14 days, in a refrigerated environment and at room temperature, and with receiving and absence of light. The antimicrobial assay of the solutions was performed by the disk diffusion method. Enterococcus faecalis was grown on Tryptic Soil Agar (TSA) (Merk) and incubated at ± 35ºC for 24 hours. The active chlorine content was verified by iodometric titration, and the pH, by pH measuring tape. The results suggest that there was no statistically significant relevance in the results of the active chlorine content. The pH became higher with time, and the antimicrobial activity was altered according to the storage location and time.


Sign in / Sign up

Export Citation Format

Share Document